VIVEKANANDHA

COLLEGE OF ARTS AND SCIENCES FOR WOMEN [AUTONOMOUS]

An ISO 9001:2015 Certified Institution, Affiliated withPeriyar University, Salem, (Approved by AICTE and Re-Accredited with an 'A+' Grade by NAAC, Recognized Under 2(f) and 12(b) of UGC Act, 1956). Elayampalayam, Tiruchengode - 637 205, Namakkal Dt., Tamilnadu, INDIA.

DEPARTMENT OF CHEMISTRY

MASTER OF SCIENCE (M.Sc.)

M.Sc., CHEMISTRY REGULATIONS AND SYLLABUS

[FOR CANDIDATES ADMITTED FROM 2023-24 ONWARDS UNDER CBCS/OBE PATTERN]

SPONSORED BY ANGAMMAL EDUCATIONAL TRUST

Elayampalayam – 637 205, Tiruchengode Tk., Namakkal Dt., Tamil Nadu. Veerachipalayam - 637 303, Sankari Tk., Salem Dt., Tamil Nadu. Tel.: 04288 234670 (4 lines), Mobile: 64437 34670, Fax: 04288 234894 Website: <u>www.vivekanandha.ac.in</u>email: <u>vivekaadmission@gmail.com</u>

About the College

Vivekanandha College of Arts and Sciences for Women (Autonomous) was established and hailed into Women's Educational Service in the Year 1995. Angammal Educational Trust, chaired by the great Educationalist, 'Vidhya Rathna' Prof. Dr. M. KARUNANITHI, B.Pharm., M.S., Ph.D., D.Litt., sponsors this college and other institutions under the name of the great Saint Vivekanandha. Our institutions are situated on either side of Tiruchengode Namakkal Main Road at Elayampalayam, 6 km away from Tiruchengode. This is the biggest women's college in India with more than 7500 girl students and more than 18 departments. The strength of the college was just 65 at the time of its establishment. With the chairman's dedication, work, sacrifice, and long vision, this institution has grown into a Himalayan stage. As a result of which UGC, New Delhi, awarded 2f and 12B, extended Autonomous status for the second cycle. The National Assessment and Accreditation Council reaccredited it with a grade of 'A' for its successful performance. As an Autonomous Institution, academic professionals of the college framed Curriculum and Syllabi in consultation with all its stakeholders to cater to the needs of young women to fulfil women's empowerment and present Industrial needs to the local benefits. The students are empowered with confidence and the required skills to face society.

Quality Policy

To provide professional training by establishing a high-level center of learning that provides quality education at par with international standards and provides excellent education with well-equipped infrastructure to all rural women.

Our Vision

To be an academic institution exclusively for women, in dynamic equilibrium with the social and economic environment, strive continuously for excellence in education, research, and technological service to the nation.

Our Mission

The mission of our institution is to discover, teach and apply knowledge for the intellectual, cultural, ethical, social, and economic growth of women students.

REGULATIONS 1 SCOPE OF THE COURSE 2 SALIENT FEATURES	
2 SALIENT FEATURES	
3 OBJECTIVES	
4 ELIGIBILITY FOR ADMISSION	
5 DURATION OF THE COURSE	
6 ASSESSMENT	
7 PASSING MINIMUM	
8 CLASSIFICATION OF SUCCESSFUL CANDIDATES	
9 ELIGIBILITY FOR AWARD OF THE DEGREE	
10 PROCEDURE IN THE EVENT OF FAILURE	
11 COMMENCEMENT OF THESE REGULATIONS	
12 COURSE PATTERN	
13 BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN	
SYLLABUS FOR YEAR I (Semester I)	
COURSE PATTERN WITH PAPERS	
1 Concepts of Organic Chemistry and Stereochemistry	
2 Transition metal and Nuclear Chemistry	
3 Group theory, Kinetics, and Surface Chemistry	
4 Colorimetric Estimations and Inorganic Qualitative Analysis -	- Practical
5 Qualitative Analysis of Organic Mixture and Chromatography – Practical	Techniques
6 Elective-I	
SYLLABUS FOR YEAR I (Semester II)	
COURSE PATTERN WITH PAPERS	
1 Organic Reaction Mechanism	
2 Chemical Bonding and Coordination Chemistry	
3 Quantum Chemistry and Thermodynamics	
4 Inorganic Estimation and Complex Preparations - Practical	
5 Organic Preparations and Estimation - Practical	
6 Elective-II	
SYLLABUS FOR YEAR II (Semester III)	
COURSE PATTERN WITH PAPERS	
1 Natural products, Pericyclic reactions, and Retro synthesis	

2	Organometallic, Solid state, Spectroscopy, and Bio-inorganic Chemistry			
3	Physical Chemistry Electrical Practical			
4	Elective-III			
5	Human Rights			
6	6 EDC			
	SYLLABUS FOR YEAR II (Semester IV)			
1	Electrochemistry and Photochemistry			
2	Elective-IV			
3	Physical Chemistry Non-Electrical – Practical			
4	Project			

M.Sc CHEMISTRY REGULATIONS

I. SCOPE OF THE PREAMBLE

The uniqueness of the M.Sc. (Chemistry) program is its content and topic coverage, the teaching methodology and the faculty. The program expects a serious commitment of the students to take up challenging study schedules and assignments. The course involves a blend of theoretical education and practical training which run concurrently for a period of three years and equips a student with the knowledge, ability, skills, and other qualities.

The teaching methodologies include classroom lectures, industrial visits, orientation, and internships. The new syllabus may help the students to understand the newer aspects of chemistry and apply the same to real-life situations. Thus, the students turn more relevant and resourceful to society. It may enable young minds to think differently and forms a link between old ideas and new ideas in chemistry and gives comprehensive approaches to the very learning process and the learners. To have academic flexibility we have chosen and implemented Choice Based Credit System (CBCS) in our syllabus. To enhance the quality of students from 2018-2019, we have implemented an Outcome Based Education (OBE) education system for I PG students. The OBE pattern will be extended for the II PG students in forthcoming years.

II. SALIENT FEATURES

- > The course is specially designed for higher-level career placement.
- > Special guest lecturers from Industrialists will be arranged.
- Exclusively caters to students interested in pursuing higher studies.
 Special industry orientations and training are parts of the degree course.
- Project work is included in the syllabus to enhance conceptual, analytical, and deductive skills.

III. PROGRAMME O B J E C T I V E S

The new syllabi throw light on the recent and emerging areas of chemistry.

- ✓ Enable the students to understand chemistry and make them more relevant to society.
- ✓ Develop the analytical ability in students so that they prepared themselves in solving problems.
- ✓ Help the students to learn practical skills in a better way.
- ✓ Inculcate research aptitude in students.
- ✓ Enable the students to go to higher levels of learning chemistry.
- ✓ Improve the employability of the students.
- ✓ To inspire the students to apply their knowledge gained for the development of society in general.

IV. ELIGIBILITY FOR ADMISSION

Candidates seeking admission to the first year PG Degree course (M.Sc. chemistry) shall be required to have passed B.Sc., (Chemistry) B.Sc., (Applied chemistry) and B.Sc., (Industrial chemistry).

V. DURATION OF THE PROGRAMME

- The course shall extend over a period of two academic years consisting of four semesters. Each academic year will be divided into two semesters. The first semester will consist of the period from July to November and the second semester from December to April.
- The subjects of the study shall be in accordance with the syllabus prescribed from time to time by the Board of Studies of Vivekanandha College of Arts and Sciences for Women with the approval of Periyar University.
- Each subject will have 5 or 4 hours of lecture per week apart from practical training at the end of the academic year.

VI. ASSESSMENT

Assessment of the students would be made through Continuous Internal Assessment (CIA) and External Assessment (EA) for passing each subject both theory and practical papers. A candidate would be permitted to appear for the External Examination only on earning 75 % of attendance and only when her conduct has been satisfactory. It shall be open to granting exemption to a candidate for valid reasons subject to conditions prescribed.

A. CONTINUOUS INTERNAL ASSESSMENT (CIA)

The performance of the students will be assessed continuously and the Internal Assessment Marks will be made as follows:

1. Average of two CIA tests and Model exam - 10 Marks

2. Seminar		- 05 Marks
3. Assignment		- 05 Marks
3. Attendance		- 05 Marks
	Total	=25 Marks

DISTRIBUTION OF ATTENDANCE MARK

C.N.	Description	Marks			
S. No.	Percentage	Theory	Practical		
1	76-80	1	2		
2	81-85	2	4		
3	86-90	3	6		
4	91-95	4	8		
5	96-100	5	10		

B. EXTERNAL ASSESSMENT (EA)

The performance of the students would be assessed by examination at the end of each semester with a written test for theory for three hours and a practical examination at the end of even semesters for six hours. Question papers would be set by the selected external examiners in the prescribed format and evaluated by the external examiners with the help of the teacher's concern. The pattern of assessment is as follows:

Distribution of Final Assessment Marks (Theory-75, Practicals-60) <u>PHYSICAL CHEMISTRY LABORATORY</u>

Section	Theory	Marks (75)	Practical	Marks (60)
А	One mark (20)	20	Record work	5
В	Five marks (Either or)	25 Viva Voce		10
С	C Ten marks (3/5)		Experimental Skill	15
			Result	30
	Total	75	Total	60

ORGANIC AND INORGANIC CHEMISTRY LABORATORY

Practical	Marks (60)
Record work	5
Viva Voce	10
Analysis/Estimation	25
Procedure	10
Preparation	10
Total	60

Direct		
	1. Continuous Assessment Test I, II & Model 2. Assignment	
	3. End Semester Examinations	
Indirect		-

1. Course End Delivery

C. COURSE ASSESSMENT METHODS (Theory)

VII. PASSING MINIMUM

INTERNAL

There is no passing minimum for the CIA

EXTERNAL

In the University Examinations, the passing minimum shall be 50 % of 75 Marks for theory (38 marks) and 50% of 60 marks for practical (30 Marks).

VIII. CLASSIFICATION OF SUCCESSFUL CANDIDATES

Successful candidates passing the examination of Core Courses and elective courses, and secure marks

- a) 75 % and above shall be declared to have passed the examination in first class with Distinction provided they pass all the examinations prescribed for the programme at first appearance itself.
- b) 60% and above shall be declared to have passed the examinations in first class without Distinction.
- c) 50% and above but below 60% shall be declared to have passed the examinations in second class.
- d) Candidates who pass all the examinations prescribed for the programme at the first appearance itself and within a period of two consecutive academic years from the year of admission only will be eligible for university rank.

IX. ELIGIBILITY FOR AWARD OF THE DEGREE

A candidate shall be eligible for the award of the degree only if she has undergone the above degree for a period of not less than two academic years comprising four semesters and passed the examinations prescribed and fulfilled such conditions have been prescribed.

X. PROCEDURE IN THE EVENT OF FAILURE

If a candidate fails in a particular subject, she may reappear for the

end-semesterexamination in the concerned subject in subsequent semesters and shall pass the examination.

XI. COMMENCEMENT OF THESE REGULATIONS

These regulations shall take effect from the academic year 2022-23 (i.e.,) for the students who are to be admitted to the first year of the course during the academic year 2022-23 and thereafter.

				Ins.		Marks		Tetel
SEM	Course Code	Course	Course Title	Hrs / Week	Credit	CIA	ESE	Total
	22P1CH01	Core - I	Concepts of Organic Chemistry and Stereochemistry	5	5	25	75	100
	22P1CH02	Core - II	Transition metal and Nuclear Chemistry	5	5	25	75	100
	22P1CH03	Core - III	Group theory, Kinetics, and Surface Chemistry	5	5	25	75	100
I	22P1CHP01	Practical	Colorimetric Estimations and Inorganic Qualitative Analysis - Practical	5	4	40	60	100
22P1CHP02 Practical	Qualitative Analysis of Organic Mixture and Chromatographic Techniques - Practical	5	4	40	60	100		
22P1CHE01/ 02		Elective-I	4	3	25	75	100	
		Libra	ry	1				
TOTAL			30	26	180	420	600	
	22P2CH04	Core-IV	Organic Reaction Mechanism	5	5	25	75	100
	22P2CH05	Core-V	Chemical Bonding and Coordination Chemistry	5	5	25	75	100
	22P2CH06	Core – VI	Quantum Chemistry and Thermodynamics	5	5	25	75	100
II	22P2CHP03	Practical	Inorganic Estimation and Complex Preparations - Practical	5	4	40	60	100
	22P2CHP04	Practical	Organic Preparations and Estimation - Practical	5	4	40	60	100

SYLLABUS FRAMEWORK

	22P2CHE03/ 04	03/ Elective-II			3	25	75	100
		Library						
	TOTAL			30	26	180	420	600
	22P3CH07	Core - VII	Core - VII Natural products, Pericyclic reactions, and Retro synthesis		5	25	75	100
	22P3CH08	Core - VIII	Organometallic, Solid		5	25	75	100
ш	22P3CHP05	Practical	Physical Chemistry Electrical Practical	5	4	40	60	100
	22P3CHE05/ 06	Elective-III		4	3	25	75	100
	22P3HR01	Human Rights		2	1	25	75	100
	22P3CHED01 /02		EDC		3	25	75	100
	22P3CHEC1	Extra Credit Course-I		-	4*	-	-	500
	1	TOTAL	1	25	21	165	435	1100
	22P4CH09	Core – IX	Electrochemistry and Photochemistry	5	5	25	75	100
	22P4CHE07/ 08		Elective-IV	4	3	25	75	100
IV	22P4CHP06	Practical	Physical Chemistry Non-Electrical - Practical	5	4	40	60	100
	22P4CHPR01	Project		16	5	40	60	100
	22P4CHEC2	Extra Credit Course-II		-	4*	-	-	100*
		TOTAL		30	18	130	270	500
		GRAND TOTA	AL	115	91	655	1545	2800

*Not considered for grand total and CGPA

SEM	Course code	Course Title
I	22P1CHE01	Nanoscience and Nanotechnology
1	22P1CHE02	Instrumental Methods of Analysis
II	22P2CHE03	Supramolecular chemistry
11	22P2CHE04	Organic Spectroscopy
III	22P3CHE05	Physical methods in Chemistry
111	22P3CHE06	Industrial Chemistry

ELECTIVE COURSES (Chemistry Department)

IV 2	22P4CHE07	Environmental Chemistry
IV	22P4CHE08	Green Chemistry

EXTRA DISCIPILINARY COURSES (Other Department)

SEM	Course code	Course Title	
T	22P3CHED01	Applied Polymer Chemistry	
1	22P3CHED02	Dairy Chemistry	

XIII.BLOOM'S TAXONOMY-BASED ASSESSMENT PATTERN

K1-Remember; K2- Understanding; K3- Apply; K4-Analyze; K5- Evaluate

1. Theory: 75 Marks

(i)Test - I & II and ESE:

Knowledge Level	Section	Marks	Description	Total Marks
K1	A (One Mark)	20 x 01=20	Objective	
K2	B (Either /or pattern)	05 x 05=25	Descriptive	75
K3, K4 & K5	C (Three out of five)	03 x 10=30	Detailed	

PROGRAMME OUTCOMES

PO 1	Capable of demonstrating comprehensive knowledge and understanding of the disciplines.
PO 2	Ability to express thoughts and ideas effectively in writing and orally Communicating with others.
PO 3	Capability to apply analytical thoughts to a body of knowledge, analyze and evaluate evidence, arguments, claims, and beliefs based on empirical evidence.
PO 4	Capacity solves different kinds of problems and appliesone learning to real-life situations.
PO 5	Ability to analyzeinterprets and concludes quantitative qualitative data.
PO 6	The capability to use ICT in a variety of learning situations demonstrates the ability to access evaluate, use a variety of relevant information sources and use appropriate software for the analysis of data.
PO 7	Ability to work independently, identifies appropriate resources required for a project, and manages a project through to completion.
PO 8	Ability to acquire knowledge and skills including learning how to learn that are necessary for participating in learning activities throughout life through self-paced.

PROGRAMME SPECIFIC OUTCOMES

PS01: To foster a theoretical and practical knowledge of chemistry and its applications and to make responsible citizenships.

PS02: To deepen learner capacity for productive scientific thinking both within and beyond the classroom through extensive programs.

PS03: To cultivate problem-solving skills through chemical knowledge to address environmental problems, and to complement and reflect on social needs.

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN(AUTONOMOUS)

Elayampalayam, Tiruchengode-637 205.

Programme	M.Sc	ProgrammeCode		РСН		Regulations		2022-2024	
Department	Cł	nemistry				Semester			1
Course Code	Course Name		Hours per Week			Credit	Maximum Marks		Marks
			L	Т	Р	С	CA	ESE	E Total
22P1CH01	CORE PAPER Concepts of On and Stereocher	5	-	-	05	25	75	100	
Course Objectives	To enable the students to learn about the chemistry of organic compounds to enrich their knowledge in various organic reactions.								

COs	COURSE OUTCOMES
CO 1	Students will be known to name the organic compounds systematically and they will be able to identify the aromaticity of any organic compound.
CO 2	Students will be able to understand the role and formation of intermediates in organic reactions and can determine the mechanism of new organic reactions.
CO 3	Students will be well-known for nucleophillic substitution reactions.
CO 4	Students can understand the difference between nucleophillic and Electrophilic substitution reactions, which will be well-known Electrophilic substitution reactions. Various types of substitution reactions will help the students to carry out the research in future
CO 5	Knowledge of students will be enriched with fundamentals of stereochemistry
Pre-requisites	

KNOWLEDGE LEVELS (KLs)

1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synt	nesizing
CO / PO / PSO/ KL Mapping	

(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)

(5/2/1 indicates the strength of correlation, 5-strong, 2-medium, 1-weak)										
CO	S	ŀ	KLs	I	POs		KLs			
CO	1		4	Р	01		2			
CO	2		1	Р	02		1			
CO	3		3	Р	03		5			
CO	4		3	PO 4			5			
CO	5		2	Р	05		4			
PSO	1		3	Р	06		6			
PSC	2		2	Р	07		2			
PSO	3		2	Р	08	3				
CO / PO Mapping										
(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs PO1	COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8									

CO1	1	1	2	2	3	1	1	2
CO2	2	3	1	1	1	1	2	1
CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
COs		Programme Specific Outcome (POs)							
COS	CO1	CO2	CO3	CO4	CO5				
PSO1	1	3	2	2	1				
PSO2	2	2	1	3	2				
PSO3	2	1	2	1	1				

Content of the Syllabus								
	Nomenclature and aromaticity	Hours	15					
	Nomenclature of aromatic heterocyclic compounds (containing one	or two hetero					
	atoms) - Nomenclature of alicyclic, bicyclic, and tr	icyclic compou	inds. Structure					
	and reactivity: Localised and delocalized covalent b	oond - Concep	t of resonance					
Unit - I	and aromaticity - Huckel's rule for aromaticity in b	enzenoid and	non-benzenoid					
	compounds including pyrrole and pyridine, annulen	es, sydnones, a	and fullerenes.					
	Antiaromaticity, homo-aromaticity, and non-aroma	tic compound	s. Concept of					
	alternant and non-alternant hydrocarbons (azulene type). Effect of aromaticity on							
	bond length, resonance energy, and induced ring curre	ents.						
Unit – II	Reactive intermediates and methods of	Hours	15					
01111 – 11	determining reactions							
	Reactive intermediates: Structure stability and	reactivity of	intermediates,					
	generation and structure of carbocation, the concept	of classical and	l non-classical					
	carbocations, reactions involving carbocations,		structure and					
	reactivity, generation and reactions. Structure and	-						
	carbenes, and nitrenes as intermediates, their structu							
	Aryne' mechanism and ways of generation and the							
	hetarynes and reactions. Thermodynamic and k	•						
	postulate, isotope effects. Energy profile diagrams – I							
	state, Product analysis, and its importance, crossov	•	s, kinetic					
	methods, stereochemical studies, Isotopic and substitu		1.5					
	Nucleophilic substitution reactions	Hours	15					

Uni	Aliphatic Nucleophilic substitution – mechanisms $(S_N 1, S_N 2, S_N i)$ – Effect of structure - stereochemical factors – neighbouring group participation, substitutions at allylic and vinylic carbons. Correlation of structure with reactivity – Solvent effects. Aromatic nucleophilic substitution – $S_N 1 S_N Ar$, Benzyne mechanism – reactivity orientation.								
		Electrophilic substitution reactions Hours	15						
 Aliphatic Electrophilic Substitution: SE2, SEi and SE1mechanisms, Diazoni coupling reactions. Aromatic electrophilic substitution reaction - Orientati reactivity and mechanisms based on transition state theory with suitable reaction – Origins of Hammett equation – Principles of Hammett correlation – Effect structure on reaction mechanisms Hammett, modified forms of Hammett equati Taft Equation. ρ and σ parameters; 									
Uni	it - V	Stereochemistry Hours	15						
	Principles of symmetry- the concept of chirality, Molecular symmetry and chirality, Newmann, Sawhorse, Fischer, and Wedge representations and interconversions. Types of molecules exhibiting optical activity. Configurational nomenclature of acyclic and cyclic molecules: cis-trans, E & Z, D & L, (+ or –), d & 1, R & S, erythro and threo; syn&anti. Stereospecific, Chemo, Regio, Enantio and stereoselective organic transformations, asymmetric synthesis – Crams rule. Conformational analysis – 1,2disubstitutd ethane derivatives – disubstituted cyclohexanes and their stereochemical features. Conformation and reactivity of substituted cyclohexanols (oxidation) cyclohexanones (reduction) and conformations of heterocycles.								
Text	Books	Total Hours	75						
1		chemistry of Organic Compounds by D. Nasipuri							
2		on Mechanisms in Organic Chemistry, S. M. Mukherjee and S. P. Sing	h						
3	Raj K. Bansal, , Hill Publishing Company Ltd 2006.								
4	Ernest L. Eliel, Stereochemistry of Carbon Compounds, T.M.H Edition, 1975.								
5	Organ	ic Chemistry Vol. I (Sixth Edn.) and Vol. II (Fifth Ed.,) by IL finar ELI	BS.						
6	Organ	ic Chemistry (fifth Edn) by Morrison and Boyd, PHI, India.							
Refe	rences								
1	Finar I	.L., Organic chemistry Pearson Education P Ltd 2011							
2	F.A. C	arey and R.J. Sundberg, Advanced Organic Chemistry, Parts A & B, Ple	enum, 2002						

3	J. March, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 5 th ed., Wiley,					
	2000.					
4	Advanced organic chemistry by Jerry March (4th Edition) Wiley Eastern					
E-References						
1	www.masterorganicchemistry.com/2017/02/23/rules-for-aromaticity					
2	www.introorganicchemistry.com					

HOWEN ENPOYERIEN	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								ISO 80012008
Programme	M.Sc	Programme Code		F	СН		Regulatio	ns	2022-2024
Department	Chemistry					Semester			1
Course Code	Course Name			Hours per Week Credit			Maximum M		n Marks
			L	Т	Р	C	CA	ES	E Total
22P1CH02	CORE PAPER II: Transition metal and Nuclear Chemistry			-	-	05	25	7:	5 100
Course Objectives	 To gain knowledge on the physical and chemical properties of transition and inner transition elements. To give elaborate insight into the field of nuclear chemistry. 								

COs	COURSE OUTCOMES
CO 1	Students will learn the metallurgy and general properties of transition, and inner transition elements.
CO 2	Students can explore the constructive application of nuclear chemistry.
CO 3	Students will know the present national and international status of nuclear missions.
CO 4	Students will analyze the various nuclear decay process.
CO 5	Students will evaluate the present methodologies in nuclear waste treatment.
Pre-requisites	

	KNOWLEDGE LEVELS (KLs)										
1. Rememberin	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing										
(3/2/	CO / PO / PSO/ KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs											
CO 1	4	PO 1	2								
CO 2	1	PO 2	1								
CO 3	3	PO 3	5								
CO 4	3	PO 4	5								
CO 5	2	PO 5	4								
PSO 1	3	PO 6	6								
PSO 2	2	PO 7	2								
PSO 3	2	PO 8	3								

	CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
COs	COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8									
CO1	1	1	2	2	3	1	1	2		
CO2	2	3	1	1	1	1	2	1		
CO3	2	1	1	1	2	1	2	3		
CO4	1	1	3	3	2	2	1	1		
CO5	1	1	2	2	1	3	1	1		

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
COs		Programme Specific Outcome (POs)								
003	CO1	CO2	CO3	CO4	CO5					
PSO1	1	3	2	2	1					
PSO2	2	2	1	3	2					
PSO3	2	1	2	1	1					

	Content of the Syllabus								
	Transition Elements	Hours	15						
	Position in the periodic table - Electronic configuration - G	eneral characte	ristics						
	- metallic character-Ionisation potential- Variable valency	- Colour - Ma	agnetic						
Unit - I	properties - Catalytic property - Non-stoichiometry - Sta	bilization of u	inusual						
	oxidation states - Formation of coloured complexes and colorimetry-Structure								
	(only) of d-block complexes - $[Nb_6Cl_{12}]^{2+}$ - $[Re_2Cl_8]^{2-}$ - $[Mo_6Br_8]^{4+}$ - $[Ni_2($								
	DMG) ₂].								
Unit - II	Inner Transition Elements	Hours	15						
	Position in the periodic table - Electronic configuration	- Oxidation	state -						
	Solubility - Magnetic properties - Separation of lanthan	ides – product	tion of						
	lanthanide metals from lanthanide salt- Lanthanide cont	traction - Cau	se and						
	consequences - Gadolinium break - Shift reagents - Extra	ction of Thoriu	im and						
	Uranium - Comparison of lanthanides and actinides- applied	cations of lanth	anides						
	and actinides.								
	Fundamentals of Nuclear Chemistry	Hours	15						

Uni	it - III	Nuclear structure-mass and charge - Nuclear moments -Nuclear models model and liquid drop model) - Binding energy - Stability rules - numbers - n/p ratio - PF-Relation between stability of a nucleus and	Magic							
		value- Energy spectrum - Geiger-Nutta's rule, Theories of alpha decay -	Funnel							
		effect - Beta decay - β^+ and β^- decay - Electron capture - Absorption - Range and								
	Energy - Gamma ray - radioactive de-excitation - decay constant - Nuclear									
		isomerism - Internal conversion - Auger effect.								
		Nuclear Reactions and Instrumental Techniques Hours	15							
		Nuclear reactions-Types of disintegration-Alpha-Beta-Gamma emission-	Bethe's							
		notation - Q value - Reaction cross section - Threshold energy - Various t	ypes of							
Un	it - IV	special nuclear reactions - Scattering - evaporation - photonuclear - Spal	lation -							
C II		Fragmentation - Fission - Fusion - Stripping - Pick-up reactions - Detection	on and							
		measurement of radioactivity - Proportional counter - Geiger-Muller co	unter -							
		Scintillation counter - Semiconductor detector - Cloud chamber - Charged								
		particle accelerator - Linear accelerator - Cyclotron - Beatron - Synchroton.								
		Nuclear Energy and Trace ElementsHours	15							
		Nuclear fission and Nuclear fusion- Fissionable materials-Fission energy-Fission								
		neutrons-Atom bomb- Theories of fission - Fissile and fertile isotopes - Nuclear								
IIr	nit - V	fusion and stellar energy - Fusion bomb - synthetic elements - Nuclear wastes -								
	nt - v	nuclear reprocessing - radiation hazards and prevention. Applications of								
		radioactive isotopes - neutron activation analysis - isotopic dilution analysis -								
		Uses of tracers in structural and mechanistic studies, agriculture, medicine and								
		industry - Radio carbon dating - hot atom chemistry - Atomic Power Pro	jects in							
		India- nuclear holocaust.								
		Total Hours	75							
Tex	t Books									
1	H.J. A	rnikar, Essentials of Nuclear Chemistry, 4th Edn., New Age International 2005	5.							
2	J.D. Le	ee, Concise Inorganic Chemistry, 6th Edn., ELBS, London 1998.								
3	B.R,Pt	rri, L.R.Sharma and K.C.Kalia, Principles of Inorganic Chemistry, 32 nd Edn.,								
	Milesto	one Publishers & Distributers, New Delhi 2016.								
Ref	erences									
1	D. Shr	iver, M. Weller, T. Overton, J. Rourke, and F. Armstrong, Inorganic Chemistr	y, 6th							
	Edn., V	WH Freeman and Company, New York 2014.								
2	C.E. H	Iousecroft, and A.G. Sharpe, Inorganic Chemistry, 4th Edn., Pearson Educ	cation							
2	Limite	nited, Essex 2012.								

L

E-References						
1	chemed.chem.purdue.edu/genchem/topicreview/bp/ch23/history.php					

HOMEN EMPOWERULH	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								CUTIONANA CUTIONANANA CUTIONANANANANANANANANANANANANANANANANANANA
Programme	M.Sc	Programme Code			PCH	[Regulati	ons	2022-2024
Department	Chemistry				Semester				1
Course Code	Course Name		Periods per Week Credit		Maximum		m Marks		
				Т	Р	С	CA	ES	SE Total
22P1CH03	CORE PAPER III: Group theory, Kinetics, and Surface Chemistry					05	25	7:	5 100
Course Objectives1.To teach the knowledge of classifying the molecules based on symmetry and gain knowledge in identifying the point group of the unknown molecules. 2.Understand the conception of kinetics and catalysis.					•				

COs	COURSE OUTCOME					
CO 1	Students will be able to identify point groups using symmetry elements and recognize symmetry operations.					
CO 2	2 Students will learn to integrate knowledge to make rational answers in solving chemical problems.					
CO 3	Students can measure the rate of a chemical reaction.					
CO 4	Students will learn to evaluate the effect of catalysts, and temperature on the rate of a chemical reaction and determine the activation energy.					
CO 5	Students will learn and understand the importance, applications, and basic aspects of surface chemistry.					
Pre-requisites						

	KNOWLEDGE LEVELS (KLs)								
1. Rememberir	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing								
	CO / PO / PSO/ KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
	I indicates the strength	of correlation, 3-strong, 2-i	nedium, 1-weak)						
COs	KLs	POs	KLs						
CO 1	4	PO 1	2						
CO 2	1	PO 2	1						
CO 3	3	PO 3	5						
CO 4	3	PO 4	5						
CO 5	2	PO 5	4						
PSO 1	3	PO 6	6						
PSO 2	2	PO 7	2						
PSO 3	2	PO 8	3						

	CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		
CO1	1	1	2	2	3	1	1	2		
CO2	2	3	1	1	1	1	2	1		
CO3	2	1	1	1	2	1	2	3		
CO4	1	1	3	3	2	2	1	1		
CO5	1	1	2	2	1	3	1	1		

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
COs	Programme Specific Outcome (POs)								
005	CO1	CO2	CO3	CO4	CO5				
PSO1	1	3	2	2	1				
PSO2	2	2	1	3	2				
PSO3	2	1	2	1	1				

Content of the Syllabus									
	Basics of Group Theory	Periods	15						
	Symmetry - Symmetry elements and Symmetry operation	Symmetry - Symmetry elements and Symmetry operations. Group - Properties of							
	group - Types of groups - Abelian, non Abelian, sub group	ps and cyclic g	roups. Group						
Unit - I	multiplication tables, Classes and similarity transformation	. Representatio	n of groups -						
Unit - I	Matrix representation of symmetry elements, Re	ducible and	irreducible						
	representations. Properties of irreducible representation - Great orthogonality theorem								
	and its consequences - Molecular point groups - Determination of point group of								
	molecules. Construction of character table for point groups (C_{2v} , C_{3v} and C_{2h}).								
Unit - II	Applications of Group Theory	Periods	15						
	Standard reduction formula and conversion of reducible re	presentation an	d irreducible						
	representation, direct product representation. Hybridizat	ion schemes f	for atoms in						
	molecules of different geometry - AB4 tetrahedral	and AB ₃ triang	gular planar.						
	Symmetries of vibrational modes in non linear molecu	ules (H ₂ O, NH	H_3 and BF_3).						
	Selection rules for vibrational spectroscopy - IR & Raman active, mutual exclusion								
	rule and electronic transitions in formaldehyde.Crystal point group, crystal symmetry -								
	screw axis and glide plane, space groups, translational ele	ements of sym	metry,						
	differences between molecular symmetry and crystalsymme	try.							
	Chemical Kinetics	Periods	15						

Unit - III	 Reactions in solution: Comparison between gas phase and liquid phase reactions. Effect of dielectric constant on reactions in solutions, effect of ionic strength on reactions in solutions - Primary salt effect and secondary salt effect. Debye-Smoluchowski equation.Kinetics of fast reactions: Pulse methods and relaxation methods. Branched chain reactions – Stationary, non stationary chain and explosion, explosion limits and explosive reaction of H₂O₂. 						
	Kinetics and Catalysis	Periods	15				
	Catalysis - Types -Functions-Characteristics- Theories:	Theory of H	lomogeneous				
Unit - IV	catalysis. Kinetics: Homogeneous catalysis, Autocatalytic reactions, Acid-base						
	catalyzed reactions - effect of pH on reaction rates and enzyme catalysis reactions-						
1	mechanism and factors governing the enzyme catalysis-use of catalysis in industry.						
]	Inhibition of enzyme catalyzed reactions (any one).						
5	Surface Chemistry	Periods	15				
	Adsorption - Types of adsorption. Physical Adsorption isotherm: Freundlich's						
4	adsorption isotherm, Langmuir's adsorption isotherm, Brun	nauer-Emmett-'	Teller (BET)				
Unit - V	adsorption isotherm and its limitations. Estimation of surf	face areas – B	E.T method,				
]]	Point B method and Benton and White method. Chemisorption: kinetics of						
	chemisorptions and Heat of adsorption. Difference betwee	een physical a	nd chemical				
	adsorptions – Application of Adsorption.						
	Total Periods		75				

Te	xt Books
1	K.V. Raman, Group Theory, Tata McGraw - Hill Education (2004).
2	V.Ramakrishnan and M.S. Gopinathan, Group theory in chemistry, Vishal Publications, 1988.
3	A.S. Kunju, G. Krishnan, Group Theory and Its Applications in Chemistry, 2nd Edn, PHI
5	learning private Ltd (2015).
4	B.R. Puri, L.R. Sharma, M.S. Pathania, Principles of Physical Chemistry, Vishal Publishing Co.
	(2016).
5	K.J. Rajaram and J.C. Kuriakose, Kinetics and mechanism of chemical transformations,
5	Macmillan India Ltd (1993).
6	K.J. Laidler, Chemical Kinetics, Pearson (2009).
7	K. Veera Reddy, Symmetry and Spectroscopy of Molecules, New age international (2009).
8	Gurudeep Raj, Advanced Physical Chemistry, Goel Publishing House, (2014).
9	Gurudeep Raj, Surface Chemistry, Goel Publishing House, (2002).
Ref	ferences
1	F.A. Cotton., Chemical Applications of Group Theory 2nd Edn, Wiley Eastern Ltd (1989).

2	Capellos and B.H.J. Bielski, Kinetic systems, Willey interscience, Newyork, 1968.
3	P.W. Atkins., Physical Chemistry, 6th Edn, Oxford University Press, (1998).
4	Alan Vincent, Molecular Symmetry and Group theory – Programmed Introduction to chemical applications, Wiley, Newyork, 1977.
E-F	References
1	http://vlab.amrita.edu/?sub=2&brch=193∼=1013&cnt=1
2	http://unicorn.mcmaster.ca/teaching/4PB3/SymmetryLectureNotes2009-Vallance-Oxford-
	level2.pdf
3	http://cbc.arizona.edu/~salzmanr/480a/480ants/kinintro/kinintro.html
4	http://nptel.ac.in/courses/122101001

MOMEN EMPONEDUCH	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.						R	ISO 9001.2008	
Programme	M.Sc	Programme Code			PC	H	Regulatio	ns	2022-2024
Department	(Chemistry Semester						1	
Course Code	Co	ourse Name		ours Wee	per ek	Credit	Maximum Marks		
			L	Т	Р	P C CA H		ES	E Total
22P1CHP01	Practical Calorimetric Estimation and Inorganic Qualitative Analysis-Practical				5	04	40	60) 100
Course Objectives	2. То	 To acquire training in microscale experimental techniques. To acquire knowledge of the properties of ions and their compounds. To promote the students toward research activity and job opportunities 							

COs	COURSE OUTCOMES
CO 1	Students will learn how to conduct a process systematically and precisely.
CO 2	The qualitative analysis gives a type of mental training and develops a power of reasoning not equal to any other course in chemistry.
CO 3	The students will learn the nature, significance, and influence of errors and how they may best be avoided or minimized during the qualitative and quantitative examination of a chemical compound.
CO 4	Students will analyse the use of complexometric estimations.
CO 5	Students will evaluate the rare cations using qualitative analysis.
Pre-requisites	

	KNOWLEDGE LEVELS (KLs)							
1. Remembering, 2	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing							
(3/2/1 ir	CO / PO / PSO/ KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)							
COs	COs KLs POs KLs							
CO 1	4	PO 1	2					
CO 2	1	PO 2	1					
CO 3	3	PO 3	5					
CO 4	3	PO 4	5					
CO 5	2	PO 5	4					
PSO 1	3	PO 6	6					
PSO 2	2	PO 7	2					
PSO 3	2	PO 8	3					

	CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
COs	COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8								
CO1	1	1	2	2	3	1	1	2	
CO2	2	3	1	1	1	1	2	1	
CO3	2	1	1	1	2	1	2	3	
CO4	1	1	3	3	2	2	1	1	
CO5	1	1	2	2	1	3	1	1	

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)							
COs	Programme Specific Outcome (POs)							
0.03	CO1	CO2	CO3	CO4	CO5			
PSO1	1	3	2	2	1			
PSO2	2	2	1	3	2			
PSO3	2	1	2	1	1			

	Content of the Syllabus							
Unit - I	Complexometric titrations	Hours	45					
Umt - I	Estimation of Ca, Cu, Mg, Ni & Zn using complexometric titration							
	Qualitative Analysis	Hours	45					
	Qualitative analysis employing semi-micro methods and spot tests - mixtures of							
Unit - II	common cations and ions of the following less familiar elements molybdenum,							
	tungsten, selenium, tellurium, cerium, thorium, titanium, zirconium, vanadium, uranium							
	and lithium.							
	Total Hours		90					

Text	Text Books						
1	V.V. Ramanujam, Inorganic semi-micro qualitative analysis, The National Publishing Co., Ltd., Madras 2002.						
Refe	rences						
1	Vogel, Inorganic quantitative analysis, Pearson Education 2001.						
E-Re	E-References						
1	http://lib.hku.hk/Press/9622092128.pdf						
2	http://www.kvsunjuwan.com						
3	http://science-blogs.ucoz.com/resources/notes/msc/pract1/CationGuide.pdf						

HOURH EMPONENTIAL	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								TOURbeniad CENTURED Bit Mathematics
Programme	M.Sc	Programme Code			PC	H	Regulatio	ons	2022-2024
Department	Cl	hemistry				Semester	•		1
Course Code	Сог	Course Name Hours per Week Credit Maxim					timum	ım Marks	
			L	Т	Р	С	CA	ESH	E Total
22P1CHP02	Practical Qualitative Analysis of Organic Mixture and Chromatographic Techniques-Practical				5	04	40	60	100
Course Objectives	 The objective of this lab is to provide hands-on opportunities to apply the knowledge of chemical reaction in functional group analysis. It also gives hands-on training to synthesize organic compounds via a variety of organic reactions. To promote the students towards research activity and job opportunities. 								
COs				CE /		COMES			

COs	COURSE OUTCOMES
CO 1	Students can able to investigate and report an unknown compound systematically.
CO 2	Students will be known to synthesize, recrystallize, and findamelting point of an organic compound. It will help them to carry out their research in the future.
CO 3	Students can apply knowledge to identifying various functional groups.
CO 4	Students will analyze the various separation methods.
CO 5	Students can evaluate different binary organic mixtures.
Pre-requisites	

	KNOWLEDGE LEVELS (KLs)							
1. Remembering, 2	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing							
	CO / PO / PSO/ KL Mapping							
(3/2/1 in	dicates the strength of co	prrelation, 3-strong, 2-me	dium, 1-weak)					
COs	COs KLs POs KLs							
CO 1	4	PO 1	2					
CO 2	1	PO 2	1					
CO 3	3	PO 3	5					
CO 4	3	PO 4	5					
CO 5	2	PO 5	4					
PSO 1	3	PO 6	6					
PSO 2	2	PO 7	2					
PSO 3	2	PO 8	3					

	CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	
CO1	1	1	2	2	3	1	1	2	
CO2	2	3	1	1	1	1	2	1	
CO3	2	1	1	1	2	1	2	3	
CO4	1	1	3	3	2	2	1	1	
CO5	1	1	2	2	1	3	1	1	

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
COs	Programme Specific Outcome (POs)								
COS	CO1	CO2	CO3	CO4	CO5				
PSO1	1	3	2	2	1				
PSO2	2	2	1	3	2				
PSO3	2	1	2	1	1				

	Content of the Syllabus					
	Qualitative analysis of a binary mixture of organic compounds:	Hours	45			
Unit - I	Preliminary pilot analysis, pilot report, bulk separation, systematic analysis of each component inclusive of preliminary identification, confirmatory tests, derivative preparation, and recording melting point/boiling point of components.					
	Chromatographic techniques	Hours	45			
Unit - II	Thin layer chromatography and Paper chromatography-step-by-step procedures- Retention factor-Uses					
	Total Hours		90			

Text book	s
1	Antony J. Hannaford, Austin R. Tatchell, Brian S. Furniss, Peter W.G. Smith, Vogel's
1	Text Book of practical organic chemistry, Pearson Education (2006).
Reference	S
1	V. Venkateshwaran, R. Veerasamy, A. R. Kulandaivelu, Basic principles of practical
1	chemistry, Sultan Chand &Sons,New Delhi, 2016

E-References					
1	http://www.chem.uwimona.edu.jm/lab_manuals/c10expt25.html				
2	http://vlab.amrita.edu/?sub=2&brch=191∼=345&cnt=1				
3	http://amrita.olabs.edu.in/?sub=73&brch=8∼=116&cnt=1				

HONEN ENDOWENIEN	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.							EN	ISO 8012008
Programme	M.Sc	Programme Code			PCH	I	Regulati	ons	2022-2024
Department	Cl	nemistry	Semester					1	
Course Code	Course Name		Н	ours Wee	•	Credit	Max	timu	m Marks
			L	Т	Р	С	CA	ES	E Total
22P1CHE01	Elective: Nanoscience and Nanotechnology			-	-	4	25	7:	5 100
Course	1. To introduce the students to the world of nanotechnology.								
Objectives	2. To enr	ich the knowledge of		nts ir oparti		•	c methods	to p	orepare

COs	COURSE OUTCOMES
CO 1	Students will acquire knowledge on various synthetic methods of nanoparticles and techniques to characterize them.
CO 2	Students will be able to understand various types of nanoparticles and their properties.
CO 3	Students learn about the promising applications of nanotechnology.
CO 4	Students will analyse the properties of various dimensional nanoparticles.
CO 5	Students will evaluate the recent advancements in nanotechnology.
Pre-requisites	

	KNOWLEDGE LEVELS (KLs)						
1. Remembering, 2	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing						
		PSO/ KL Mapping					
(3/2/1 in	dicates the strength of c	orrelation, 3-strong, 2-me	dium, 1-weak)				
COs/PSOs	KLs	POs	KLs				
CO 1	4	PO 1	2				
CO 2	1	PO 2	1				
CO 3	3	PO 3	5				
CO 4	3	PO 4	5				
CO 5	2	PO 5	4				
PSO 1	3	PO 6	6				
PSO 2	2	PO 7	2				
PSO 3	2	PO 8	3				

	CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	
CO1	1	1	2	2	3	1	1	2	
CO2	2	3	1	1	1	1	2	1	
CO3	2	1	1	1	2	1	2	3	
CO4	1	1	3	3	2	2	1	1	
CO5	1	1	2	2	1	3	1	1	

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
COs	Programme Specific Outcome (POs)								
COS	CO1	CO2	CO3	CO4	CO5				
PSO1	1	3	2	2	1				
PSO2	2	2	1	3	2				
PSO3	2	1	2	1	1				

	Content of the Syllabus					
	Introduction to Nanoscience	Hours	15			
	Introduction, history, nanoscale & nanotechnology	, nanotech	generation-			
Unit - I	nanoscience, nanocomposites, zero dimensional nanon	naterials: meta	l and metal			
Unit - I	oxide nanoparticles, one dimensional nanomaterial nano	ostructures: na	nowires and			
	nanorods, - two dimensional materials nanostructures: thi	n films - three	dimensional			
	nanomaterials: Carbon fullerenes and carbon nanotubes.					
Unit - II	Synthesis of Nanomaterials	Hours	15			
	Physical methods- Physical Vapour Deposition (PVD). C	hemical metho	ds -Chemical			
	precipitation and Sol-gel synthesis; Chemical vapor	ur deposition	(CVD) and			
	Thermolysis routes, Microwave heating synthesis ch	emical Reduc	tion method,			
	Hydrothermal method, Solvothermal method, Phot	tochemical sy	onthesis and			
	electrochemical synthesis.					
		TT	15			
	Characterizations of nanomaterials	Hours	15			
	X-ray Diffraction (XRD), Photo Electron Spectroscopy (XPS). Thermal gravimetric					
Unit - III	analysis (TGA), Differential Scanning Calorimetry (D	SC), Electron	Microscopy:			
	Scanning Electron Microscopy (SEM), Ene	ergy-dispersive	e X-ray			
	analysis EDAX, High Resonance Transmission Electron Microscopy (HR-TEM).,					
	Atomic Force Microscopy (AFM).					
	Properties and Applications of Nanoparticles	Hours	15			

	Size dependence of Properties - Chemical Reactivit	y – Solubility	y - Optical			
	properties - surface plasmon resonance, Magnetic properties - size dependent					
Unit -IV	properties such as coercivity and saturation magnetization	on. Application	s: Medicine,			
	Nanoelectronics, supercapacitorsbatteries, environmental	protection, for	od and			
	agriculture, energy, and nanomaterial-based products. Risks of nanomaterials.					
	Nano biomaterials	Hours	15			
	Introduction: Biological building blocks - size of building blocks and nanostructures					
Unit - V	Unit - V - protein nanoparticles. Nucleic Acids - DNA Double Nanowire, Genetic code ar protein synthesis - Biological nanostructures - Multilayer films. Biopolymer					
	Biomaterials.					
	Total Hours		75			

Text B	ooks
1.	Mark Ratner, Daniel Ratner, Nanotechnolgy, Pearson Education, Inc. 2007
2.	G.SchmidEds,Nanoparticles, Wiley-VCH, 2004.
3.	G.HodesEds, Electrochemistry of Nanomaterials, Wiley-VCH, 2001.
4.	M.Kohler, W.Fritzsche, Nanotechnology, Wiley-VCH, 2004
Refere	nces
1.	K.L.Choy, Process principles and applications of novel and cost- effective ESAVD based
	methods, World Scientific Publishing, Singapore, 2002
2.	A.Jones and M.Mitchell, Nanotechnology-Commercial Opportunity, Evolution Capital Ltd.
	London, 2001.
3.	Mick Wilson, Kannangara, Geoff Smith, Michelle Simmons and Burkhard Raguse,
	Nanotechnology basic science and emerging technologies, overseas press
4.	Charles P. Poole, Jr., Frank J. Owens, Introduction to Nanotechnology, Wiley reprint 2012
E-Refe	rences
1.	nptel.ac.in/courses/103103033/module9/lecture1.pdf
2.	http://folk.ntnu.no/fredrol/Nanomaterials%20and%20Nanochemistry.pdf
3.	https://www.ceitec.eu/nanoparticles-for-biomedical-applications/f33079
4.	nptel.ac.in/courses/103103033/module9/lecture1.pdf
5.	http://folk.ntnu.no/fredrol/Nanomaterials%20and%20Nanochemistry.pdf

HONEN EMPONENTIAL	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.							DR	TO SO SO 12008
Programme	M.Sc	Programme Code			PC	H	Regulat	ions	2022-2024
Department	Chemistry			Semester				1	
Course Code	Course Name		Hours per Week Credit Ma		timu	imum Marks			
			L	Т	Р	С	CA	ES	E Total
22P1CHE02	Elective: Instrumental Methods of Analysis					04	25	75	5 100
Course Objectives	 To enable the students to handle instruments. Acquire the fundamentals and principles of spectroscopic techniques. Enhance the knowledge in thermo electro-analytical methods. 								

COs	COURSE OUTCOMES			
CO 1	Students will understand the fundamentals of molecular spectroscopy.			
CO 2	Students will learn about the concepts of electronic spectroscopy.			
CO 3	Students will apply their knowledge in absorption and emission spectroscopy.			
CO 4	CO 4 Students will analyze the various electro analytical methods.			
CO 5	Students can evaluate the thermal stability of various materials using TGA.			
Pre-requisites				

	KNOWLEI	OGE LEVELS (KLs)	
1. Remembering, 2. U	Inderstanding, 3. Apj	olying, 4. Analyzing, 5. Eval	uating, 6. Synthesizing
(3/2/1 indic		PSO/ KL Mapping orrelation, 3-strong, 2-medi	um, 1-weak)
COs/PSOs	KLs	POs	KLs
CO 1	4	PO 1	2
CO 2	1	PO 2	1
CO 3	3	PO 3	5
CO 4	3	PO 4	5
CO 5	2	PO 5	4
PSO 1	3	PO 6	6
PSO 2	2	PO 7	2
PSO 3	2	PO 8	3

	CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1	1	2	2	3	1	1	2
CO2	2	3	1	1	1	1	2	1
CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)						
COs	Programme Specific Outcome (POs)						
COS	CO1	CO2	CO3	CO4	CO5		
PSO1	1	3	2	2	1		
PSO2	2	2	1	3	2		
PSO3	2	1	2	1	1		

	Content of the Syllabus					
	Fundamentals of spectroscopy	Hours	15			
Unit - I	Electromagnetic spectrum: Electromagnetic radiation - pr	roperties, wave	e parameters			
Umt - I	interaction of light with matter - types of spectroscopy: A	Atomic & Mol	ecular			
	spectroscopy -Absorption and Emission spectra.					
	UV And IR spectroscopic techniques	Hours	15			
Unit - II	UV-Visible spectroscopy- Principle, Electronic tra auxochromes, the solvent effect on absorption spectra, Applications. Infrared spectroscopy-principle,polyatomic sample handling, factors affecting vibrations. instrumentat Applications.	instrumentati and diatomic	c molecules,			
Unit - III	Atomic absorption and emission	Hours	15			
01111 - 111	spectroscopic techniques					
	Flame photometry, Atomic Absorption Spectroscopy	(AAS): Princ	iple, theory,			
	instrumentation and application. Luminescence Sp	bectroscopy,	Fluorescence			
	Spectroscopy: Principle, theory, instrumentation and application.Quenching,					
	instrumentation and applications					
	Electro analytical methods	Hours	15			

Unit - IV	 Polarography-principle-concentrationpolarization-droppingmercuryelectrode- advantage and disadvantage - convection, migration and diffusion currents – Illkovicequation (derivation not needed) and its significance -Chrono potentiometry basic principles, applications and advantages. 				
Unit - V	Thermo analytical methodsPrinciples and instrumentation thermo gravimetric analysisgravimetric analysis (DTA) - characteristics and curves -DTA curves- calcium oxalate monohydrate and silver nitrat	factors affectir			
	Total Hours		75		

Text	Books
1	Gopalan. R, Elements of analytical chemistry, Sultan Chand, 2009.
2	Kaur, Instrumental methods of chemical analysis.
Refe	rences
1	Khopkar S.M, Analytical Chemistry, New Age International, 2006.
2	Skog.A and West .M, Fundamentals of analytical chemistry, Saunders College Publications, 2004.
3	Sharma B.K, Instrumental methods of chemical analysis God Publications, 2007.
4	Usharani. S, Analytical Chemistry, Macmillan, 2008.

HOULEN ENDOWERNEN	VIVEKAN	R	ISO 80012008						
Programme	M.Sc	Programme Code			PCI	I	Regulatio	ns	2022-2024
Department	Cł				Semester	•		2	
Course Code	Course Name		Hours per Week Credit			Credit	Maximur		n Marks
				Т	Р	С	CA	ES	E Total
22P2CH04	CORE PAPER IV: Organic Reaction Mechanism					05	25	75	5 100
Course	1. To enrich the student's knowledge in the field of reactions and reagents involved in organic chemistry.								
Objectives	2. To impart	knowledge in understanding the reaction conditions and mechanisms to arrive required product.							

COs	COURSE OUTCOMES
CO 1	Students will learn the addition reactions taking place in the organic molecules.
CO 2	Students acquire deep knowledge on elimination reactions.
CO 3	Students can understand the path of different molecular rearrangements.
CO 4	Students will learn about the mechanism and applications of various naming reactions used in organic synthesis.
CO 5	Students will evaluate the role of reagents in organic synthesis.
Pre-requisites	

	KNOWLEDGE LEVELS (KLs)									
1. Re	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing									
	CO / PO / PSO/ KL Mapping									
	(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
C	COs/PS	Js		KLs		POs		KLs		
	CO 1			4		PO 1		2		
	CO 2			1		PO 2		1		
CO 3		3			PO 3		5			
CO 4		3			PO 4		5			
	CO 5			2	PO 5		4			
	PSO 1			3		PO 6		6		
	PSO 2			2		PO 7		2		
	PSO 3			2		PO 8		3		
	CO / PO Mapping									
	(3/	2/1 indic	ates the st	rength of cor	relation, 3-s	strong, 2-med	ium, 1-weak)			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8		

CO1	1	1	2	2	3	1	1	2
CO2	2	3	1	1	1	1	2	1
CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs		Programme Specific Outcome (POs)									
COS	CO1	CO2	CO3	CO4	CO5						
PSO1	1	3	2	2	1						
PSO2	2	2	1	3	2						
PSO3	2	1	2	1	1						

	Content of the Syllabus								
	Addition reactions	Hours	15						
	Addition across C-C multiple bonds – Electrophillic, Nucleophillic, Free radicals,								
	orientation and reactivity - Addition of halogen and ni	trosyl chloride	e to olefin.						
Unit - I	Hydration of olefins and acetylenes. Epoxidation, Hydrol	boroation, Hyd	lroxylation,						
Umt - I	Michael addition and Brich reduction. Diels Alder reacti	on, 1,3-dipola	r additions.						
	Carbenes, Nitrenes and their addition to double bond.	Simmon-Smit	h reaction,						
	Mannich, Stobbe, Darzen, Wittig, Wittig-Horner, Grigna	Mannich, Stobbe, Darzen, Wittig, Wittig-Horner, Grignard, and Benzoin							
	condensation.								
	Elimination reactions	Hours	15						
Unit - II	Elimination reactions – Mechanism of E1, E2 and E1CB – stereochemistry of								
Umt - 11	elimination, Hofmann and Saytzeff rules - competition between Elimination and								
	substitution – Pyrolytic – Cis elimination, Chugaev reaction	n – Typical read	ctions such						
	as Dehydration, dehydrohalogenation, Hofmann degradatio	n, Cope elimin	ation –						
	Bredt's rule.								
	Molecular rearrangements	Hours	15						
	A detailed study of the mechanism of the following re-	earrangements.	Wagner –						
Unit - III	Meerwin, Demyanov, Dienone-Phenol, Favorski, Baeyer -	- Villiger, Wol	ff, Stevens,						
	Von - Richter, Beckmann, Hoffmann, Curtius, Lossen,	Benzil-Benzilio	c acid						
	rearrangement, Kornblum Benzidine, Fries rearrangement, Ireland.								
	Organic naming reactions and applications	Hours	15						

	A detailed study of the following naming reactions - Biginelli reaction, Hoeben -							
Unit - IV	Hoesch reaction, Vilsmeyer formylation, Bucherer reaction, Pauson - Khand							
	reaction, Heck reaction, Suzzuki, Stille, Sonogashira, Negi	shi, Cadiot–Ch	odkiewicz					
	coupling reactions. Huigens synthesis. Baylis-Hillman, Luch	ne, Yamaguchi	reaction.					
	Reagents for Organic synthesis	Hours	15					
	Aluminium chloride, Alumniumisopropoxide, N-Bromosuccinimide, OsO4, DCC,							
	NChlorosuccinimide, Diazomethane, Fenton's reagent, Hydrogen peroxide, Lead							
Unit - V	tetraacetate, Lithium aluminium hydride, Perbenzoic acid, Periodic acid, Seleniun							
	dioxide, Sodium borohydride, DDQ, Wilkinson catalyst, Gilman's Reagents, 1, 3							
	Dithiane, Trimethylsilyl halide.							
	Total Hours		75					

Text Bo	ooks
1	Jerry March, Advanced organic chemistry - Reactions Mechanism and tructure, McGraw Hill Kogakusha Ltd., 1977.
2	S.H. Mukhergee and S.P. Singh, Reaction Mechanisms in Organic Chemistry, McMillan 1976.
3	Raj K.Bansal, Organic Chemistry Reaction mechanisms, Hill Publishing Company Ltd 2006
4	I.L. Finar, Organic chemistry, Vol. II. Pearson Education P Ltd 2011
Referen	nces
1	S. N. Sanyal, Reactions, Rearrangements and Reagents, Bharati Bhavan Publishers & Distributor 2011
2	V.K. Ahluwalia, Rakesh Kumar Parashar and R. K. Parashar, Organic Reaction Mechanisms Narosa Publishing House 2002
E-Refe	rences
1	https://www.name-reaction.com/list
2	https://www.synarchive.com/named-reactions

HOMEN EMPOYEMUCH	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								TO WINHINAND CONTINUED
Programme	M.Sc	Programme Code			РСН		Regulati	ions	2022-2024
Department	С	Semester						2	
Course Code	Course Name		Hou	rs per	Week	Credit	Max	timu	m Marks
				Т	Р	С	CA	ES	E Total
22P2CH05	CORE PAPER V: Chemical Bonding and Coordination Chemistry					05	25	75	5 100
Course Objectives	-	owledge on types of bond d the concept of HOMO a	-	-		-		d forr	nation.

COs	COURSE OUTCOMES
CO 1	Students will acquire sound knowledge on bonding in inorganic molecules.
CO 2	Students will learn the theories, mechanism of complex formation and the electronic spectra of coordination complexes.
CO 3	Students will acquire knowledge about term symbols and its applications.
CO 4	Students will analyze the bioinorganic molecules in coordination chemistry.
CO 5	Students will evaluate the various coordination theories.
Pre-requisites	

	KNOWLEDGE LEVELS (KLs)										
1. Remembering, 2.	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing										
(3/2/1 indi	CO / PO / PSO/ KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs/PSOs	COs/PSOs KLs POs KLs										
CO 1	4	PO 1	2								
CO 2	1	PO 2	1								
CO 3	3	PO 3	5								
CO 4	3	PO 4	5								
CO 5	2	PO 5	4								
PSO 1	3	PO 6	6								
PSO 2	2	PO 7	2								
PSO 3	2	PO 8	3								

	CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
CO1	1	1	2	2	3	1	1	2			
CO2	2	3	1	1	1	1	2	1			
CO3	2	1	1	1	2	1	2	3			
CO4	1	1	3	3	2	2	1	1			
CO5	1	1	2	2	1	3	1	1			

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
COs		Programme Specific Outcome (POs)								
0.05	C01	CO2	CO3	CO4	CO5					
PSO1	1	3	2	2	1					
PSO2	2	2	1	3	2					
PSO3	2	1	2	1	1					

Content of the Syllabus											
	Chemical Bonding I Hours 15										
	Ionic bond - Lattice energy and its determination	-Born-Lande	equation -								
Unit - I	Application of Born-Haber type calculations - Size effe	cts - Ionic rad	ii - Factors								
Unit - I	affecting ionic radii - Lewis structure - VB theory. M	Iolecular orbit	al theory -								
	Symmetry and overlap - Molecular orbitals of diatomic a	and triatomic r	nolecules -								
	Walsh diagram of H2 - Ionization of diatomic molecules										
	Covalent Bonding and Molecular Structure	Hours	15								
	Covalent bonding Formal charges-Limitations of octet	rule- Hybrid	ization and								
	geometry-VSEPR model of methane, ammonia, water, sili	con tetrafluorio	de, AX_2 and								
	AX4 type, and some xenon compounds, Bent's rule - Fai	lures of VBT-	MO theory								
Unit - II	LCAO method-Molecular orbitals in homo nuclear diatomic molecules of oxygen, beryllium, nitrogen and carbon, hetero nuclear diatomic molecules such as HCl, NO										
	and CO-HOMO and LUMO concepts in bonding.										
	Coordinationchemistry	Hours	15								
		Hours	15								

	Crystal field theory (CFT) – Crystal field splitting in octahedral, tetrahedral and										
Unit - III	square planar complexes - Crystal field stabilization energy and its applications -										
	Weak and strong fields - Pairing energy - Factors affecting the magnitude of crystal field splitting. Jahn-Teller theorem – Limitations of CFT - Molecular orbital (MO)										
	field splitting. Jahn-Teller theorem – Limitations of CFT - Molecular orbital (MO)										
	theory for octahedral, tetrahedral and square planar complexes - Types of pi-bonds-										
	pi-bonding and MO theory – Evidences for pi-bonding										
	Reaction Mechanism in Coordination complex	Hours	15								
	Stability of complexes, Thermodynamic and kinetic st	ability-stability	constants								
	Substitution reactions-General mechanism-Schemes of o	ctahedral, tetra	hedral and								
Unit - IV	square planar complexes-Trans effect-Theories of trans	effect-pi-bond	ing theory								
	and polarisation theory - Applications of trans effect-Cat	alysis by trans	ition metal								
	complexes, Hydrogenation of alkene-Wilkinson's catalyst, Hydroformylation - Oxo										
	process, Wacker process and Zieglar-Natta catalysis.										
	Electronic Spectra and Organometallics	Hours	15								
	Spectroscopic term symbols for dn ions-derivation of term symbols and ground state										
	term symbols-Energy level diagrams. Electronic spectra of complexes-Orgel										
TT •4 T 7	diagram - interpretation of electronic spectra of d1 to d9-Tanabe-Sugano diagrams-										
Unit - V	charge transfer spectra-Carbonyls Binuclear and tri nuclear carbonyls of iron -										
	charge transfer spectra-Carbonyls Binuclear and tri nuc	clear carbonyls	of iron -								
	charge transfer spectra-Carbonyls Binuclear and tri nuc preparation, properties, uses - Nature of M-CO bond in car	-									
		bonyls - Nitros	syls-Nature								
	preparation, properties, uses - Nature of M-CO bond in car	bonyls - Nitros	syls-Nature								
	preparation, properties, uses - Nature of M-CO bond in car of M-NO bonding - Metallocenes Ferrocene, Cobaltocen	bonyls - Nitros	syls-Nature								
Text Books	preparation, properties, uses - Nature of M-CO bond in car of M-NO bonding - Metallocenes Ferrocene, Cobaltocen and structure.	bonyls - Nitros	syls-Nature Properties								
	preparation, properties, uses - Nature of M-CO bond in car of M-NO bonding - Metallocenes Ferrocene, Cobaltocen and structure.	bonyls - Nitros	syls-Nature Properties 75								
	preparation, properties, uses - Nature of M-CO bond in car of M-NO bonding - Metallocenes Ferrocene, Cobaltocen and structure. Total Hours	bonyls - Nitros	syls-Nature Properties 75								
1 J. E. H 2006	preparation, properties, uses - Nature of M-CO bond in car of M-NO bonding - Metallocenes Ferrocene, Cobaltocen and structure. Total Hours	bonyls - Nitros	syls-Nature Properties 75								
1 J. E. H 2006	preparation, properties, uses - Nature of M-CO bond in car of M-NO bonding - Metallocenes Ferrocene, Cobaltocen and structure. Total Hours heey, E. A. Keiter and R. L. Keiter., Inorganic Chemistry, 4th	bonyls - Nitros	syls-Nature Properties 75								
1 J. E. Hu 2006 2 R. D. M References	preparation, properties, uses - Nature of M-CO bond in car of M-NO bonding - Metallocenes Ferrocene, Cobaltocen and structure. Total Hours heey, E. A. Keiter and R. L. Keiter., Inorganic Chemistry, 4th	bonyls - Nitros e-Preparation,	syls-Nature Properties 75 education								
1 J. E. Hi 2006 2 R. D. N References 1 C. N. E	preparation, properties, uses - Nature of M-CO bond in car of M-NO bonding - Metallocenes Ferrocene, Cobaltocen and structure. Total Hours wheey, E. A. Keiter and R. L. Keiter., Inorganic Chemistry, 4th Madan., Modern Inorganic Chemistry, Chand Publishers 2004	bonyls - Nitros e-Preparation, n Edn, Pearson Hill, Newyork	syls-Nature Properties 75 education								
1 J. E. Hu 2006 2 R. D. M References 1 C. N. E	preparation, properties, uses - Nature of M-CO bond in car of M-NO bonding - Metallocenes Ferrocene, Cobaltocen and structure. Total Hours wheey, E. A. Keiter and R. L. Keiter., Inorganic Chemistry, 4th Madan., Modern Inorganic Chemistry, Chand Publishers 2004 anwell., Fundamentals of Molecular Spectroscopy, Mc Graw ng., Basic principles of Spectroscopy, McGraw Hill Ltd., New	bonyls - Nitros e-Preparation, n Edn, Pearson Hill, Newyork	syls-Nature Properties 75 education								
1 J. E. Hu 2006 2 R. D. M References 1 C. N. E 2 R. Cha E-Reference	preparation, properties, uses - Nature of M-CO bond in car of M-NO bonding - Metallocenes Ferrocene, Cobaltocen and structure. Total Hours wheey, E. A. Keiter and R. L. Keiter., Inorganic Chemistry, 4th Madan., Modern Inorganic Chemistry, Chand Publishers 2004 anwell., Fundamentals of Molecular Spectroscopy, Mc Graw ng., Basic principles of Spectroscopy, McGraw Hill Ltd., New	bonyls - Nitros e-Preparation, n Edn, Pearson Hill, Newyork	syls-Nature Properties 75 education								
1 J. E. Hi 2006 2 R. D. N References 1 C. N. E 2 R. Cha E-Reference 1 http://c	preparation, properties, uses - Nature of M-CO bond in car of M-NO bonding - Metallocenes Ferrocene, Cobaltocen and structure. Total Hours wheey, E. A. Keiter and R. L. Keiter., Inorganic Chemistry, 4th Madan., Modern Inorganic Chemistry, Chand Publishers 2004 anwell., Fundamentals of Molecular Spectroscopy, Mc Graw mg., Basic principles of Spectroscopy, McGraw Hill Ltd., New	bonyls - Nitros e-Preparation, n Edn, Pearson Hill, Newyork	syls-Nature Properties 75 education								
1 J. E. Hi 2006 2 R. D. N References 1 C. N. E 2 R. Cha E-Reference 1 http://c	preparation, properties, uses - Nature of M-CO bond in car of M-NO bonding - Metallocenes Ferrocene, Cobaltocen and structure. Total Hours wheey, E. A. Keiter and R. L. Keiter., Inorganic Chemistry, 4th Madan., Modern Inorganic Chemistry, Chand Publishers 2004 anwell., Fundamentals of Molecular Spectroscopy, Mc Graw ng., Basic principles of Spectroscopy, McGraw Hill Ltd., New es	bonyls - Nitros e-Preparation, n Edn, Pearson Hill, Newyork	syls-Nature Properties 75 education								

HONEL LARGE LAND	VIVEKANANI	τŬ	ISO 9001-2008 What had structure o 9008/9627							
Programme	M.Sc	M.Sc Programme Code PCH Regulations 2020-2022								
Department	Cl	hemistry	Semester 2						2	
Course Code	Course Name		Periods per Week		-	Credit	Maximu		um Marks	
			L	Т	Р	С	CA	ESE	Total	
22P2CH06	CORE PAPER VI: Quantum Chemistry and Thermodynamics					05	25	75	100	
Course Objectives	2. To e	 To impart knowledge in the field of Quantum chemistry with applications. To enable the students to acquire knowledge on statistical thermodynamics. 								

COs	COURSE OUTCOME					
CO 1	Students will be able to identify wave functions using operators and recognize functions and values.					
CO 2	Students will learn to perturbation and variation.					
CO 3	Students can learn the concept of chemical potential, fugacity of gases, Activity and activity coefficient					
CO 4	Students will learn the Objectives and various functions of Statistical thermodynamics					
CO 5	Students acquire deep knowledge about the concept of non-equilibrium and applications					
Pre-requisites						
KNOWLEDGE LEVELS (KLs)						

	KNOWLEDGE LEVELS (KLs)										
1. Remembering, 2.	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing										
	CO / PO / PSO/ KL Mapping										
(3/2/1 indi	cates the strength of c	correlation, 3-strong, 2-me	dium, 1-weak)								
COs/PSOs	COs/PSOs KLs POs KLs										
CO 1	4	PO 1	2								
CO 2	1	PO 2	1								
CO 3	3	PO 3	5								
CO 4	3	PO 4	5								
CO 5	2	PO 5	4								
PSO 1	3	PO 6	6								
PSO 2	2	PO 7	2								
PSO 3	2	PO 8	3								

	CO / PO Mapping										
	(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs	COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8										
CO1	1	1	2	2	3	1	1	2			
CO2	2	3	1	1	1	1	2	1			
CO3	2	1	1	1	2	1	2	3			
CO4	1	1	3	3	2	2	1	1			
CO5	1	1	2	2	1	3	1	1			

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
COs		Programme Specific Outcome (POs)								
COS	CO1	CO2	CO3	CO4	CO5					
PSO1	1	3	2	2	1					
PSO2	2	2	1	3	2					
PSO3	2	1	2	1	1					

	Content of the Syllabus									
	Quantum Chemistry-I	Periods	15							
	Quantum theory: Inadequacy of classical mechanics,	Black body	Radiation –							
	Experimental results of Black body radiation - Photoelectric effect - De - Broglie									
	equation – Heisenberg uncertainty principle – Compton ef	fect. Born's int	erpretation of							
	wave function. Operators and commutation relations, Eigen functions and Eigen values.									
Unit - I	Quantum mechanical postulates – Schrodinger equation an	d its solution to	o the problem							
	of a particle in one- and three-dimensional boxes, the ha	armonic oscilla	ator, the rigid							
	rotator and Hydrogen atom (Arriving solution for energ	y and wave fu	unction). The							
	origin of quantum numbers and their physical significance	– Probability of	distribution of							
	electrons. Approximation methods – Perturbation and Vari	ation methods	– application							
	of Variation method to Hydrogen and Helium atom.									
	Quantum Chemistry-II	Periods	15							
	Theory of chemical bonding - Born - Oppenheimer app	proximation – 2	LCAO – MO							
Unit - II	approximation for hydrogen molecule ion and Hydrogen	– Valence Be	ond theory of							
	Hydrogen molecule. Concept of Hybridization – sp, sp ² and	d s ^{p3} hybridizat	tion – Huckel							
	Molecular orbital (HMO) theory for conjugated π - system	m – applicatio	ns to simple							

	systems (Ethylene and butadiene) - Physical Significance	e of HMO coef	ficients. Self						
	consistent field approximation - Hartree and Hartree - F	ock Self Cons	istant field						
	theory – Slater type orbitals – Slater rules.								
	Thermodynamics - I	Periods	15						
	Thermodynamics of non-ideal systems - Concept of chemi	cal potential -	Gibbs-Duhem						
	equation - Variation of chemical potential with temperature	re and pressure	e - Concept of						
Unit - III	fugacity of gases - Determination by graphical method a	and from equat	tion of state -						
Umt - 111	Variation of fugacity with temperature and pressure - Fugacity coefficient - Activit and activity coefficient - Variation of activity of a gas with pressure an								
	temperature.Determination of solvent activity by vapour pressure method and								
	Cryoscopic method.								
	Statistical ThermodynamicsPeriods15								
	Objectives of Statistical thermodynamics, concept	of thermody	namical and						
	mathematical probabilities, Distribution of distinguishable and non distinguishable								
	particles. Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics Law -								
	comparisons. Partition Function – Translational, Vibrational, Rotational and Electronic								
Unit - IV	partition Functions. Thermodynamic Functions in ter	rms of partiti	of partition Function,						
	Statistical expression for equilibrium constant C. Calculat	tion of Equilibrium	rium Constant						
	from Partition function (isotopic exchange equilibria and	nd dissociation	n of diatomic						
	molecules) Heat capacities of monoatomic crystals - Einstein s and Debye s theories of								
	heat capacities.								
	Irreversible Thermodynamics	Periods	15						
	Reversible and Irreversible process - Types of irreversibi	lity of process	. Postulates of						
	Non-Equilibrium thermodynamics. Entropy production	- heat flow	and matter						
Unit - V	flow.Progogine's principle of minimum entropy production	n. Forces, flux	es and Flows -						
	Entropy production of forces and fluxes. Linear laws - Phe	nomenological	law - Onsager						
	reciprocal relation - proof by Microscopic reversibility - Electro kinetic phenomenon –								
	Diffusion. Non-Equilibrium stationary states and Applicatio	ons – Peltier eff	ect.						
<u> </u>	Total Periods		75						

Text	Books								
1	Arun Bahl, B. S.Bahl, G. D.Tuli., Essentials of Physical Chemistry, Multicolour Revised Edn,								
1	S. Chand and Company Ltd, (2008).								
2	L. K. Nash., Chemical Thermodynamics, 2nd Edn, Addision Wesley Publishing (1976)								
3	P.W. Atkins., Physical Chemistry, 6th Edn, Oxford University Press, (1998)								
4	Gurudeep Raj, Advanced Physical Chemistry, Goel Publishing House, (2014).								
Refe	rences								
1	R. K. Prasad., Quantum Chemistry, Viva Books Private Ltd (2013).								
2	D. McQuarrie., Quantum Chemistry, Viva Books Private Limited (2013).								
3	A. K. Chandra., Introductory Quantum Chemistry, Tata McGraw Hill (1994).								
4	W. J. Moore., Physical Chemistry, Longmann's (1975).								
5	M.C. Gupta., Statistical Thermodynamics, Wiley Eastern Limited (1990)								
6	I. N. Levine, Quantum Chemistry, 4th Edn., Prentice Hall India, (1994).								
7	B. K. Sen., Quantum Chemistry Including Spectroscopy, Kalyani publishers (2004).								
8	S. Glasstone., Thermodynamics for Chemists - East-west Press Pvt.Ltd, (2002).								
9									
E-Re	eferences								
1	www.chemistryexplained.com								
2	http://unicorn.mcmaster.ca/teaching/4PB3/SymmetryLectureNotes2009-Vallance-Oxford-								
	level2.pdf								
3	http://cbc.arizona.edu/~salzmanr/480a/480ants/kinintro/kinintro.html								

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.

Programme	M.Sc	Programme Code			P	СН	Regulations		2022-2024
Department	C	hemistry				Semester			2
Course Code	Co	Course Name Hours per Week Credit Maximu		ximu	m Marks				
Course Code			L	Т	Р	С	CA E	ES	E Total
22P2CHP03	Practical Inorganic Estimation and Complex Preparations- Practical				5	04	40	60	
Course Objectives	 To acquire training in micro scale experimental techniques. To acquire knowled on the properties of ions and their compounds. To educate the students about the complex formation reaction, influence of p stability of complexes and application 								

COs	COURSE OUTCOMES
CO 1	Students will learn how to conduct a process systematically and precisely
CO 2	The qualitative analysis gives a type of mental training and develops a power of reasoning not equal to any other course in chemistry
CO 3	The students will learn the nature, significance, and influence of errors and how they may best be avoided or minimized during the qualitative and quantitative examination of a chemical compound
CO 4	Students will able to design and synthesize new complexes
CO 5	Students will able to carry out their research in future
Pre-requisites	

	KNOWLEI	DGE LEVELS (KLs)								
1. Remembering, 2.	. Understanding, 3. Apj	plying, 4. Analyzing, 5. Eval	uating, 6. Synthesizing							
		PSO/ KL Mapping								
(3/2/1 inc	licates the strength of c	orrelation, 3-strong, 2-medi	um, 1-weak)							
COs/PSOs	COs/PSOs KLs POs KLs									
CO 1	4	PO 1	2							
CO 2	1	PO 2	1							
CO 3	3	PO 3	5							
CO 4	3	PO 4	5							
CO 5	2	PO 5	4							
PSO 1	3	PO 6	6							
PSO 2	2	PO 7	2							
PSO 3	2	PO 8	3							

	(3/2	/1 indica	tes the stre		Mapping elation, 3-st	rong, 2-mediu	ım, 1-weak)	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1	1	2	2	3	1	1	2
CO2	2	3	1	1	1	1	2	1
CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)							
COs Programme Specific Outcome (POs)								
003	CO1	CO2	CO3	CO4	CO5			
PSO1	1	3	2	2	1			
PSO2	2	2	1	3	2			
PSO3	2	1	2	1	1			

	Content of the Syllabus		
	Organic Estimations and Spectral Interpretations	Hours	35
Unit - I	Iron and Magnesium, Iron and Nickel, Copper and Nickel,	Copper and Zin	ıc
	Preparations	Hours	40
	Tris(thiourea)copper(I) chloride Bis(acetylacetanato) co	pper(II)	
Unit - II	Hexammine cobalt(III) chloride Sodium hexa nitro coba	ltate(III)	
	Potasiumtrioxalato aluminate (III) trihydrate		
	Chloropentammine cobalt(III) chloride Hexammine nickel	(II) chloride	
	Total Hours		75
References			
1	J. Mendham, R.C. Denney, J.D. Barnes, M.J.K. Thomas Chemical Analysis", 6th Edition, Pearson Education (20	U	oook ofQuantitative
2	V. Venkateswaran, R. Veeraswamy and A.R.Kulandaiv Chemistry, New Delhi, S.Chand& Co, (1995)	elu, Basic Princ	iples of Practical

E-References	
1	http://lib.hku.hk/Press/9622092128.pdf
2	http://www.kvsunjuwan.com
3	http://science-blogs.ucoz.com/resources/notes/msc/pract1/CationGuide.pdf

WORKEN ENDOWERNICHT	VIVEKA	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.							TOURNAME CONTINUE CONTINUE	
Programme	M.Sc	M.Sc Programme Code PCH Regulations					2022-2024			
Department	Chemistry					Semester			2	
Course Code	Course Name		Hours per Week Credit			Maximum Marks		um Marks		
			L	Т	Р	С	CA	ES	SE Total	
22P2CHP04	U				5	04	40	6	0 100	
Course Objectives	1. The objective of this lab is to p of chemical rea				incti	ional group	analysis.		-	
	C	 It also gives hands-on training to synthesize organic compounds via a variety of organic reactions. To promote the students towards research activity and job opportunities. 								

COs	COURSE OUTCOMES
CO 1	Students can able to investigate and report an unknown compound systematically.
CO 2	Students will be known to synthesize, recrystallize and finding melting point of an organic compound. It will help them to carry out their research in future.
CO 3	Students can apply knowledge on identifying various functional groups.
CO 4	Students will analyze the various separation methods.
CO 5	Students can evaluate different binary organic mixtures.
Pre-requisites	

	KNOWLE	DGE LEVELS (KLs)								
1. Remembering			Evaluating, 6. Synthesizing							
(3/2/1		/ PSO/ KL Mapping correlation, 3-strong, 2-m	nedium, 1-weak)							
COs/PSOs	COs/PSOs KLs POs KLs									
CO 1	4	PO 1	2							
CO 2	1	PO 2	1							
CO 3	3	PO 3	5							
CO 4	3	PO 4	5							
CO 5	2	PO 5	4							
PSO 1	3	PO 6	6							
PSO 2	2	PO 7	2							
PSO 3	2	PO 8	3							

	(3/2/	/1 indicat	tes the stre		Mapping lation, 3-str	ong, 2-mediu	m, 1-weak)	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1	1	2	2	3	1	1	2
CO2	2	3	1	1	1	1	2	1
CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)						
COs Programme Specific Outcome (POs)							
0.05	CO1	CO2	CO3	CO4	CO5		
PSO1	1	3	2	2	1		
PSO2	2	2	1	3	2		
PSO3	2	1	2	1	1		

	Content of the Syllabus		
	Organic Estimations and Spectral Interpretations	Hours	35
Unit - I	Estimation of phenol, Estimation of aniline, Estimation of met	hyl ketone, Estin	nation of
Unit - I	glucose. Interpretation of IR and UV visible spectra of organic	compounds (six	in each
	case)		
	Two stage preparations	Hours	40
Unit -	sym-Tribromobenzene from aniline (Bromination + Hydrolysi	s) p-nitroaniline	from
Umt - II	acetanilide (Nitration + Hydrolysis) Benzanilide from benzop	henone (Beckma	nn
11	rearrangement) m-nitroaniline from nitrobenzene (Nitration +	Reduction) p-bro	omo
	acetanlide from aniline (Acetylation + Bromination)		
	Total Hours		75
Text bo	oks		
	ntony J. Hannaford, Austin R. Tatchell, Brian S. Furniss, Peter W	G. Smith, Voge	l's Text
1 B	ook of practical organic chemistry, Pearson Education (2006).		
Defener			
Referen	tes		
V	Venkateshwaran, R. Veerasamy, A. R. Kulandaivelu, Basic pr	inciples of pract	ical
1	· · · · · · · · · · · · · · · · · · ·	F	ieui

E-References

1	http://www.chem.uwimona.edu.jm/lab_manuals/c10expt25.html
2	http://vlab.amrita.edu/?sub=2&brch=191∼=345&cnt=1
3	http://amrita.olabs.edu.in/?sub=73&brch=8∼=116&cnt=1

HONEN EMPONEEMECT	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								ISO 8001:2008 Rheinland INTERFED
Programme	M.Sc	Programme	Code	PCH Regulations					022-2024
Department	(Chemistry				Semest	er		2
Course Code	C	Course Name Hours per Week Credit Maximum Ma							
		Ι	, T	Р	С	CA	ESE	Total	
22P2CHE03	Elective: III Supramolecul	ar chemistry	4			03	25	75	100
Course Objectives	1. The fu 2. The co	s been designed indamentals of s p-receptor molec ipramolecular re	upramolect cules and m	ıles. ultip	ole rec	cognition	s.		
COs			COURSE	OU	TCC	OMES			
CO 1	Interpret the Chemistry.	information ab	out variou	s co	oncep	ots invol	ved in sup	ramole	cular
CO 2	Compare the d	Compare the different model for the metallo organic frameworks.							
CO 3	Explain the metallorecept	various co-re	eceptor m	oleci	ules	and m	ultiple reco	ognitio	ns in
CO 4	Examine the S	upramolecular r	eactivity a	nd th	eir ca	atalytic ad	ctivity.		
CO 5	Analyze the r And technolog	ole of supramol gy.	lecular che	mist	ry in	the deve	lopment of	nanoso	cience
Pre-requisites									
		KNOWLE	DGE LEV	ELS	5 (KI	Ls)			
1. Remember	ering, 2. Under	rstanding, 3. Ap	oplying, 4.	Ana	lyzin	g, 5. Eva	luating, 6. S	Synthe	sizing
("	R/2/1 indicates	CO / PO the strength of	/ PSO/ KL				ium 1 wee	(k)	
COs/PSO		the strength of KLs		1, 3-9 POs	stron	lg, ∠-med		ik) Ls	
CO 1		4		$\frac{0}{01}$				LS 2	
CO 2		1		$\frac{01}{02}$				1	
CO 3									
CO 4		3		04				5	
CO 5		2		05				4	
PSO 1		3	Р	06			(5	
PSO 2		2	Р	07			,	2	
PSO 3		2	Р	08			-	3	

	CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
CO1	1	1	2	2	3	1	1	2			
CO2	2	3	1	1	1	1	2	1			
CO3	2	1	1	1	2	1	2	3			
CO4	1	1	3	3	2	2	1	1			
CO5	1	1	2	2	1	3	1	1			

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs		Programme Specific Outcome (POs)									
005	CO1	CO2	CO3	CO4	CO5						
PSO1	1	3	2	2	1						
PSO2	2	2	1	3	2						
PSO3	2	1	2	1	1						

	Content of the Syllabus							
	Concepts of Supramolecular Chemistry	Hours	15					
	Concepts and languages of supramolecular chemistry -	various types o	f non- covalent					
	interactions - hydrogen bonds, C-HX interaction	ons, halogen	bonds $-\pi$ - π - π					
	interactions, non-bonded interactions - various type	es of molecula	ar recognition.					
Unit - I	Crystal engineering of organic solids - hydrogen box	nded supramol	ecular patterns					
	involving water / carboxyl / halide motifs - concepts	of different typ	es of synthons					
	based on non-covalent interactions - principles of o	crystal enginee	ring and non-					
	covalent synthesis – polymorphism and pseudopolymorphism – supramolecular							
	isomorphism / polymorphism – crystal engineering of ph	narmaceutical p	hases.					
	Metallo Organic Frameworks	Hours	15					
	M.O.F (Metallo Organic Frameworks) – organometallic systems – combinations of							
Unit - II	different interactions to design molecular rods, triangles, ladders, networks, etc							
	design of nanoporous solids - interligand hydrogen bonds in metal complexes -							
	implications for drug design – crystal engineering of NLO materials, OLED.							
	Co-receptor Molecules and Multiple Recognition	Hours	15					
Unit - III	Dinuclear and polynulclear metal ion cryptates – linear recognition of molecular							
0mt - 111	length by ditopic co-receptors - heterotopic co-receptors - cyclophane receptors,							
	amphiphilic receptors and large molecular cages – multiple recognition in metalloreceptors – supramolecular dynamics							
		I						
	Supramolecular Reactivity and Catalysis	Hours	15					

Unit	Unit - IVCatalysis by reactive macrocyclic cation receptor molecules – catalysis by reactive macrocyclic cation receptor molecules – catalysis by reactive anion receptor molecules – catalysis with cyclophane type receptor supramolecular metallocatalysis – cocatalysis – catalysis of synthetic reaction biomolecular and abiotic catalysis. upramolecular chemistry in solutio cyclodextrin, micelles, dendrimers, gelators – classification and typical reaction applications						
		Supramolecular Devices Hours	15				
		Supramolecular devices and sensors – various types of supramolecular	devices – an				
		overview – supramolecular photochemistry – molecular and su	ıpramolecular				
		photonic devices - light conversion and energy transfer devices - n	nolecular and				
Unit	- V	supramolecular electronic devices - electronic conducting devices	– molecular				
		wires, modified and switchable molecular wires - molecular and su	pramolecular				
		ionic devices - tubular mesophases, molecular protonics - switchi	ng devices –				
		electro-photo switch - ion and molecule sensors - role of supramolecul	lar chemistry				
		in the development of nanoscience and technology					
		Total Hours	75				
Text	Books						
1	G. R.	Desiraju and T. Steiner. 2001. The Weak Hydrogen Bond in Structural					
	Chem	istry and Biology. International Union of Crystallography.					
2	J. M.	Lehn. 1995. Supramolecular Chemistry. Wiley VCH.					
Refe	rences						
1	J. M.	Lehn. 1999. Transition Metals in Supramolecular Chemistry. John Wiley					
	and S	ons.					
2	G. R.	Desiraju. 1989. Crystal Engineering: The Design of Organic Solids.					
	Elsev	ier.					
3	G. A.	leffrey. 1997. Introduction to Hydrogen Bonding. Oxford University					
	Press	UK.					
4	Jonatl	nan W. Steed and Jerry L. Atwood. 2009. Supramolecular Chemistry.					
•	1						
·	2nd e	dition. Wiley-Blackwell.					
	2nd eo	•					

HOUSEN ENDOWERNEN	VIVEKANAN	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								
Programme	M.Sc	Programme Code			PC	H	Regulatio	ns	2022-2024	
Department	(Semeste	er		2		
Course Code	Course Name		Hours per Week		Credit	Maximum Marks		n Marks		
				Т	Р	С	CA	ESE	E Total	
22P2CHE04	Elective: III Organic Spectroscopy					03	25	75	100	
Course Objectives		To enable the students to identify the organic compounds. Acquire the fundamentals an orinciples of spectroscopic techniques. Enhance the knowledge in mass, NMR, pectroscopy.								

COs	COURSE OUTCOMES
CO 1	Students will understand the basic principles of UV visible spectroscopy.
CO 2	Students will learn about the basic concepts of IR spectroscopy.
CO 3	Students will apply their knowledge on interpretation of mass spectrum.
CO 4	Students will analyze the chemical shift in molecules using NMR.
CO 5	Students will evaluate the types of spectra.
Pre-requisites	

	KNOWLEDGE LEVELS (KLs)										
1	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing										
	CO / PO / PSO/ KL Mapping										
	(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
	COs/PSOs		KLs		POs		KI	2S			
	CO 1		4		PO 1		2				
	CO 2		1		PO 2		1				
	CO 3		3		PO 3		5				
	CO 4		3		PO 4		5				
	CO 5		2		PO 5		4				
	PSO 1		3		PO 6						
	PSO 2		2		PO 7		2				
	PSO 3		2		PO 8		3				
				CO / PO Ma	apping						
	(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
CO1	1	1	2	2	3	1	1	2			
CO2	2	3	1	1	1	1	2	1			

CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
COs		Programme Specific Outcome (POs)								
COS	CO1	CO2	CO3	CO4	CO5					
PSO1	1	3	2	2	1					
PSO2	2	2	1	3	2					
PSO3	2	1	2	1	1					

	Content of the Syllabus								
	UV Visible Spectroscopy	Hours	15						
Unit - I	Frank-Condon principle, Types of electronic transitions, Chromophores & Auxochromes,								
Umt - 1	absorption and intensity shifts, Types of absorption bands	, Effect of ten	nperature and						
	solvent on the fineness of absorption band, conjugated dienes, Woodward - Fieser rul								
	IR Spectroscopy	Hours	15						
Unit - II	Vibrational frequencies & factors affecting them, number of	fundamental vi	ibrations,						
01111 - 11	selection rules, identification of functional groups, Finger F	Print Region, A	pplications of						
	IR spectroscopy								
	Mass Spectrometry	Hours	15						
	Principle - EI, CI & FAB - Base peak, isotopic peaks, metastable peak, parent peak,								
Unit - III	Fragmentation - Nitrogen, even electron rule and pattern, McLafferty rearrangement,								
	Retro – Diel's Alder reaction fragmentation pattern of hydrocarbons, alcohols, aldehydes								
	and ketones, phenols, ethers								
	NMR Spectroscopy	Hours	15						
	Basic principles of NMR experiments - Shielding and deshielding effects- Chemical								
Unit - IV	Shift. Factors influencing chemical shift, splitting of signals, Spin-Spin coupling&								
	Coupling constant - Factors influencing Proton Chemical Shift & Proton - Proton								
	Coupling constant, AX & AB spin system - Spin decoupling - Nuclear Overhaust effect -								
	Chemical exchange. ¹³ C NMR chemical shift & factor affection	ing ¹³ C Chemic	al shift.						
	Identification of organic compounds	Hours	15						
Unit - V	Identification of organic molecules alcohols, aldehydes, ketones, ethers, hydrocarbons								
	esters using UV, IR, NMR and Mass spectroscopic technique	es.							
	Total Hours		75						

Text	Books
1	Finar. I.L, Organic Chemistry, Vol-I&II, Fifth Edition, ELBS Publication, 2006.
2	Sharma. Y.R, Elementary Organic Spectroscopy, Fifth Edition, S. Chand Publication, 2013.
3	Jag mohan, Organic Spectroscopy: Principles and Applications, Second Edition, Alpha Science International Ltd., Harrow, U.K.
Refe	rences
1	Dyer.J, Applications of Organic Spectroscopy, Prentice & Hall of India Pvt Ltd., NewDelhi, 1980.
2	Mukerjee.S.M&Singh.S.P, Organic Reaction Mechanism, McMillan India Ltd., Chennai, 1990.
3	Kemp. W, Organic Spectroscopy, Mcmillan Ltd., 2001.

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.

Programme	M.Sc	Programme Code	ode		РСН		Regulations		2022-2024
Department	Cł	nemistry				Semester	r		3
Course Code	Cou	Course Name		Hours per Week		Credit	Maximum		n Marks
				Т	Р	С	CA	ESE	E Total
22P3CH07	Core - VII Natural products, Pericyclic reactions, and Retro synthesis					05	25	75	100
Course Objectives	 To enable students to learn about the chemistry of natural products. To learn the concepts of pericyclic reactions. To learn the relation between the structure and physiological properties of chemicals. To learn the basic principles and various methods. 								

COs	COURSE OUTCOME
	Students can learn about the chemical properties and structure of organic
CO 1	compounds like terpenoids, alkaloids, steroids and flavones, etc derived from
	plant materials.
	Students can understand isolation, characterization and laboratory synthesis of
CO 2	natural products.
	Students can know the concept of HOMO and LUMO, and their influence in
CO 3	bond formation.
	Students study the nature of double-bonded compounds and the possible isomer
CO 4	arrived upon their rearrangement.
	The knowledge of students will be enriched with green chemistry and various
CO 5	types of eco-friendly reactions could be conducted on their own.
Pre-requisites	

KNOWLEDGE LEVELS (KLs)								
1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing								
CO / PO / PSO/ KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
COs KLs POs KLs								
CO 1	4	PO 1	2					
CO 2	1	PO 2	1					
CO 3	3	PO 3	5					
CO 4	3	PO 4	5					

CO 5	2	PO 5	4
PSO 1	3	PO 6	6
PSO 2	2	PO 7	2
PSO 3	2	PO 8	3

		(3/2/1 indi	cates the st		O Mapping relation, 3-s	trong, 2-me	dium, 1-weak))
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1	1	2	2	3	1	1	2
CO2	2	3	1	1	1	1	2	1
CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1
		(3/2/1 in	dicates the	strength of c			nedium, 1-wea (POs)	lk)
C	COs	(CO1	CO2		CO3	CO4	CO5
PSO	1		1	3		2	2	1
PSO	2		2	2		1	3	2
PSO	3		2	1		2	1	1

	Content of the Syllabus						
	Terpenoids and Steroids	Hours	15				
Unit - I	Terpenes: classification,, structural elucidation and synthesi zingiberene. Steroids: classification, structural elucidation of not required), stigmasterol (synthesis not required), structural of estrone and progesterone.	of cholesterol (synthesis				
	Alkaloids and Flavonoids	Hours	15				
Unit - II	Alkaloids: classification, structural elucidation and synthesis of papaverine, quinine, morphine and reserpine.Flavones: introduction and Baker-Venkatraman synthesis - Flavanol: synthesis of quercetin – Isoflavones: synthesis of daidzein.						
	Anthocyanins and Vitamins	Hours	15				
Unit - III	Introduction to anthocyanins – synthesis of anthocyanins. st applications - uric acid, purine derivatives and xanthine base watersoluble vitamins, structural elucidation of vitamin B6, vitamin K	es Vitamins: fa	itand				
	Pericyclic Reactions and Photochemistry	Hours	15				
Unit - IV	Electrocyclic reactions (butadiene-cyclobutene system), cyc +2) and (2+2)) systems, sigmatropic and cheletropic reaction						

		molecular orbital and correlation diagrams, 1,3 and 1,5 - hydrogen sh	ifts							
		Sigmatropic rearrangements: Claisen, Cope and oxy-Cope rearrangen								
		Photochemistry: cis-trans isomerization, buterno-buchi reaction, Norr		e I and						
	type II reactions, di-pi methane rearrangement-photoreduction of ketones, barton's reaction									
		Strategies for Organic Synthesis Hours		15						
		Retrosynthetic analysis: synthons and synthetic equivalents, functiona								
		interconversion - disconnection approach – one group C-X, two group								
Т	J nit - V	group C-C disconnections - chemoselectivity, umpolungand amine sy								
Ľ	int v	protection and deprotection : alcohols, carbonyls, carboxylic acids and								
		functional groups - reterosynthetic analysis: alternate synthetic routes	, synthe	esis of						
		organic mono and bifunctional compounds via disconnection approac	h —							
		stereochemical control of products: selective aldol and Michael reaction	ons							
		Total Hours		75						
Text	t Books									
1	V.K.Ahluw	alia,M.Kidwai,New trends in green chemistry,Second Edition,2007								
2	Arun Bahl a	and B.S.Bahl, Advaced organic chemistry, S.Chand and company, 2009								
3	T.W.Grahamsalomons, CarigB.Fryhle,Organic chemistry,9th edition,Wiley.2011.									
4	Singh, Jagadamba and L.D.S. Yadav. Advanced Organic Chemistry.Meerut: Pragati									
4	Prakashan,	2010								
Refe	erences									
1	I.L. Finar or	rganic Chemistry, Vol. II, 5th Edition ELBS 1975								
2	O.P.Agarwa	al, Chemistry of Organic Natural products,Goel publication vol I & II								
3	M.G. Arora	, Organic Photochemistry and Pericyclic reaction, 2008								
4	C.H.Depuy	,O.SChampman Molecular reactions and Photo-chemistry, Prentice Hall	, 1975							
5	B.B. Grill, I	M. R. Willis, Pericyclic reactions, Champan& Hall 1974.								
E	Jonathan, C	Clayden, Nick Greeves, Stuart Warren. Organic Chemistry. New Yo	ork: O	xford						
6	University Press, 2012									
E-R	eferences									
1	https://articl	les.mercola.com/sites/articles/archive/2017/08/28/terpenoids.aspx								
2	https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/pericycl.htm									
3	https://lpi.or	regonstate.edu/mic/dietary-factors/phytochemicals/flavonoids								
4	www.essent	tialchemicalindustry.org/processes/green-chemistry.html								

Worker EMPONERIULI	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								ECHTURED SO BOOLOOS
Programme	M.Sc	Programme Code			PC	CH	Regulatio	ns	2022-2024
Department	Chemistry			Semester					3
Course Code	Course Name		Hours per Week Credit		Maximum		n Marks		
			L	Т	Р	С	CA	ES	E Total
22P3CH08	CORE PAPER VIII: Organometallic, Solid state, Spectroscopy and Bio-inorganic Chemistry					05	25	75	5 100
Course Objectives	To gain knowledge about Boron compounds, cages, chains and clusters. To learn elaborately in the field of solid state and bio-inorganic chemistry. To understand the working and application of various analytical tools to deduce crystal structure of solids.								

COs	COURSE OUTCOME
CO 1	Students have the knowledge of application and properties of non-aqueous solvents and formation of liquid and gaseous molecules.
CO 2	Students can able understand the commercial application of Organometallic Chemistry & catalysis.
CO 3	Students are enable to understand the basic of crystal structure, application of the analytical tools like XRD, AAS and PES tools in elucidating three dimensional structure of the inorganic molecules.
CO 4	Students can know the importance of biologically important materials in our body.
CO 5	Students will have enriched knowledge on porphyrin and other bioinorganic molecules.
Pre- requisites	

	KNOWLEDGE LEVELS (KLs)									
1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing										
(2)2)1	CO / PO / PSO/ KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
	idicates the strength of o	correlation, 3-strong, 2-m	edium, 1-weak)							
COs	KLs	POs	KLs							
CO 1	4	PO 1	2							
CO 2	1	PO 2	1							
CO 3	3	PO 3	5							
CO 4	3	PO 4	5							
CO 5	2	PO 5	4							
PSO 1	3	PO 6	6							
PSO 2	2	PO 7	2							
PSO 3	2	PO 8	3							

	CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs	COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8										
CO1	1	1	2	2	3	1	1	2			
CO2	2	3	1	1	1	1	2	1			
CO3	2	1	1	1	2	1	2	3			
CO4	1	1	3	3	2	2	1	1			
CO5	1	1	2	2	1	3	1	1			

CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)							
COs	Programme Specific Outcome (POs)						
0.03	CO1	CO2	CO3	CO4	CO5		
PSO1	1	3	2	2	1		
PSO2	2	2	1	3	2		
PSO3	2	1	2	1	1		

	Content of the Syllabus							
	Boron compounds and Clusters Boron hydrides	Hours	15					
	Inorganic chains - rings - cages and clusters - catenation -	- heterocatenati	on - intercalation					
	chemistry - one dimensional conductor - isopolyanions -	- heteropolyani	ons - borazines -					
Unit - I	- I phosphazenes - phosphazene polymers - ring compounds of sulphur and nitro							
	homocyclic inorganic systems - cages - boron cage	compounds -	metal clusters -					
	dinuclear clusters - trinuclear clusters - tetranuclear clusters	usters - hexanı	uclear clusters -					
	structural prediction of organometallic clusters.							
	Organometallic Chemistry	Hours	15					
	Carbon donors - Alkyls and Aryls-preparation and properties; Carbonyls -18 electron							
	rule, isolobal concept - application to structure of carbonyls (simple and polynuclear);							
Unit - II	Nitrosyls - bridging and terminal nitrosyls, bent and linear nitrosyls; dinitrogen							
	complexes; Chain Carbon donors - Olefins, acetylene and allyl complexes - synthesis,							
	structure and bonding; Cyclic Carbon donors - Metallocene - synthesis, structure and							
bonding (Ferrocene only).								
Unit - III	Catalysis	Hours	15					

	Hydrogenation of olefins (Wilkinsons catalyst); hydroformylation of olefins using Coba									
	or Rhodium catalysts (oxo process); Oxidation of olefins to aldehydes and ketones									
	(Wacker process); polymerization (Zeigler-Natta catalyst);									
	acetylene using Nickel catalyst (Reppe's catalyst); polymer bound catalysts.									
	Solid state Chemistry	Hou	rs 1	;						
Unit - IV		owder method	- packing of							
	atoms and ions in solids- Electrical properties of solids – E	•								
	super conductors, theory of super conductivity – defects in		•	es;						
	magnetic properties of solids – dia, para, ferro, antiferro ar	nd ferrimagnetis	sm.							
Unit - V	Bio-inorganic Chemistry	Hours	15							
	Porphyrin ring system - Metalloporphyrins - Haemogl	lobin and Myo	globin-structu	res						
	and work functions - other oxygen carriers - Cyto	ochromes: Stru	cture and w	ork						
	functions in respiration - Chlorophyll, structure - photo synthetic sequence - Sulph									
		•								
	proteins - (Non Haemo iron protein) - Copper oxid	lizes - Blue co	opper protein	s -						
	proteins - (Non Haemo iron protein) - Copper oxid Carboxyl peptidase A: Structure, function - Vitamin B1	lizes - Blue co	opper proteir in vitro nitro	s - gen						
	proteins - (Non Haemo iron protein) - Copper oxid Carboxyl peptidase A: Structure, function - Vitamin B1 fixation - Molecular mechanism of ion transport acros	lizes - Blue co	opper proteir in vitro nitro	s - gen						
	proteins - (Non Haemo iron protein) - Copper oxid Carboxyl peptidase A: Structure, function - Vitamin B1 fixation - Molecular mechanism of ion transport across ion pumps-Chelate therapy-cis-platin.	lizes - Blue co	opper proteir in vitro nitro ne - Na and	s - gen						
	proteins - (Non Haemo iron protein) - Copper oxid Carboxyl peptidase A: Structure, function - Vitamin B1 fixation - Molecular mechanism of ion transport acros	lizes - Blue co	opper proteir in vitro nitro	s - gen						
Text Books	proteins - (Non Haemo iron protein) - Copper oxid Carboxyl peptidase A: Structure, function - Vitamin B1 fixation - Molecular mechanism of ion transport acros ion pumps-Chelate therapy-cis-platin. Total Hours	lizes - Blue co 12, In vivo and ss the membra	opper proteir in vitro nitro ne - Na and 75	gen K						
U. M	proteins - (Non Haemo iron protein) - Copper oxid Carboxyl peptidase A: Structure, function - Vitamin B1 fixation - Molecular mechanism of ion transport across ion pumps-Chelate therapy-cis-platin.	lizes - Blue co 12, In vivo and ss the membra	opper proteir in vitro nitro ne - Na and 75	gen K						
U. M	proteins - (Non Haemo iron protein) - Copper oxid Carboxyl peptidase A: Structure, function - Vitamin B1 fixation - Molecular mechanism of ion transport acros ion pumps-Chelate therapy-cis-platin. Total Hours	lizes - Blue co 12, In vivo and ss the membra	opper proteir in vitro nitro ne - Na and 75	gen K						
1 U. M Chane	proteins - (Non Haemo iron protein) - Copper oxid Carboxyl peptidase A: Structure, function - Vitamin B1 fixation - Molecular mechanism of ion transport acros ion pumps-Chelate therapy-cis-platin. Total Hours alik, G. D. Tuli and R. D. Madan., Selected topics in In-	lizes - Blue co 12, In vivo and ss the membra organic Chemi	opper proteir in vitro nitro ne - Na and 75 stry, 6th Edr	s - gen K						
1 U. M Chane	proteins - (Non Haemo iron protein) - Copper oxid Carboxyl peptidase A: Structure, function - Vitamin B1 fixation - Molecular mechanism of ion transport acros ion pumps-Chelate therapy-cis-platin. Total Hours alik, G. D. Tuli and R. D. Madan., Selected topics in In- d & company Ltd., (2005). Puri, L. R. Sharma and K. C. Kalia., Principles of Inorgan	lizes - Blue co 12, In vivo and ss the membra organic Chemi	opper proteir in vitro nitro ne - Na and 75 stry, 6th Edr	s - gen K						
1 U. M Chang 2 B. R. (2004	proteins - (Non Haemo iron protein) - Copper oxid Carboxyl peptidase A: Structure, function - Vitamin B1 fixation - Molecular mechanism of ion transport acros ion pumps-Chelate therapy-cis-platin. Total Hours alik, G. D. Tuli and R. D. Madan., Selected topics in In- d & company Ltd., (2005). Puri, L. R. Sharma and K. C. Kalia., Principles of Inorgan	lizes - Blue co 12, In vivo and ss the membra organic Chemi nic Chemistry,	opper proteir in vitro nitro ne - Na and 75 stry, 6th Edr	s - gen K						
1 U. M Chang 2 B. R. (2004	proteins - (Non Haemo iron protein) - Copper oxid Carboxyl peptidase A: Structure, function - Vitamin B1 fixation - Molecular mechanism of ion transport acros ion pumps-Chelate therapy-cis-platin. Total Hours alik, G. D. Tuli and R. D. Madan., Selected topics in In- d & company Ltd., (2005). Puri, L. R. Sharma and K. C. Kalia., Principles of Inorgan).	lizes - Blue co 12, In vivo and ss the membra organic Chemi nic Chemistry,	opper proteir in vitro nitro ne - Na and 75 stry, 6th Edr	s - gen K						
U. M 1 Change 2 B. R. (2004) 3 R. D.	proteins - (Non Haemo iron protein) - Copper oxid Carboxyl peptidase A: Structure, function - Vitamin B1 fixation - Molecular mechanism of ion transport acros ion pumps-Chelate therapy-cis-platin. Total Hours alik, G. D. Tuli and R. D. Madan., Selected topics in In- d & company Ltd., (2005). Puri, L. R. Sharma and K. C. Kalia., Principles of Inorgan).	lizes - Blue co 12, In vivo and ss the membra organic Chemi nic Chemistry,	opper proteir in vitro nitro ne - Na and 75 stry, 6th Edr	s - gen K						
U. M Chand 2 B. R. (2004 3 R. D. 4	proteins - (Non Haemo iron protein) - Copper oxid Carboxyl peptidase A: Structure, function - Vitamin B1 fixation - Molecular mechanism of ion transport acros ion pumps-Chelate therapy-cis-platin. Total Hours alik, G. D. Tuli and R. D. Madan., Selected topics in In- d & company Ltd., (2005). Puri, L. R. Sharma and K. C. Kalia., Principles of Inorgan).	lizes - Blue co 12, In vivo and ss the membra organic Chemi nic Chemistry,	opper proteir in vitro nitro ne - Na and 75 stry, 6th Edr	s - gen K S.						
U. M Chano 2 B. R. (2004 3 R. D. 4 5 References	proteins - (Non Haemo iron protein) - Copper oxid Carboxyl peptidase A: Structure, function - Vitamin B1 fixation - Molecular mechanism of ion transport acros ion pumps-Chelate therapy-cis-platin. Total Hours alik, G. D. Tuli and R. D. Madan., Selected topics in In- d & company Ltd., (2005). Puri, L. R. Sharma and K. C. Kalia., Principles of Inorgan).	lizes - Blue co 12, In vivo and ss the membra organic Chemi nic Chemistry, 004).	opper proteir in vitro nitro ne - Na and 75 stry, 6th Edr S. Chand & 0	s - gen K S.						
U. M Chano 2 B. R. (2004 3 R. D. 4 5 References	proteins - (Non Haemo iron protein) - Copper oxid Carboxyl peptidase A: Structure, function - Vitamin B1 fixation - Molecular mechanism of ion transport across ion pumps-Chelate therapy-cis-platin. Total Hours alik, G. D. Tuli and R. D. Madan., Selected topics in Ind & company Ltd., (2005). Puri, L. R. Sharma and K. C. Kalia., Principles of Inorgan). Madan., Modern Inorganic Chemistry, Chand Publishers (20 Huheey, E. A. Keiter and R. L. Keiter., Inorganic Chemistr	lizes - Blue co 12, In vivo and ss the membra organic Chemi nic Chemistry, 004).	opper proteir in vitro nitro ne - Na and 75 stry, 6th Edr S. Chand & 0	s - gen K S.						
U. M Chance 2 B. R. (2004) 3 R. D. 4 - 5 - 1 J. E. I (2006) -	proteins - (Non Haemo iron protein) - Copper oxid Carboxyl peptidase A: Structure, function - Vitamin B1 fixation - Molecular mechanism of ion transport across ion pumps-Chelate therapy-cis-platin. Total Hours alik, G. D. Tuli and R. D. Madan., Selected topics in Ind & company Ltd., (2005). Puri, L. R. Sharma and K. C. Kalia., Principles of Inorgan). Madan., Modern Inorganic Chemistry, Chand Publishers (20 Huheey, E. A. Keiter and R. L. Keiter., Inorganic Chemistr	lizes - Blue co 12, In vivo and ss the membra organic Chemi nic Chemistry, 004).	opper proteir in vitro nitro ne - Na and 75 stry, 6th Edr S. Chand & 0 arson educati	s - gen K S. Co						

3	G. Raj., Advanced Inorganic Chemistry Vol. I & Vol. II, 6th Edn, Goel publishing house (1999).							
4	G. S. Manku., Theoretical Principles of Inorganic Chemistry, Tata McGraw -Hill Publishing							
4	Company Ltd., (Reprint 2001).							
E-Re	E-References							
1	global.oup.com/ushe/product/boron compounds-9780198502593							
2	https://www.nature.com > subjects							
3	https://www.chemie.uni-hamburg.de/ac/rehder/Lund_BioinorgChem_08.pdf							
	Signature of BOS Chairman							

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.

EMPOWER									
Programme	M.Sc Programme Code PCH Regulations		ons 2	2022-2024					
Department		Chemistry				Semest	er		3
Course Code	Course Name		Hours per Week		Credit	Maximum Marks		Marks	
			L	Т	Р	С	CA	ESE	Total
22P3CHP05	Physical OPractical	Chemistry Electrical			6	04	40	60	100
Course Objectives	samp 2. To d	samples. 2. To develop laboratory skills							
COs		COURSE OUTCOME							
CO 1	Students will	l understand the breadth	and	cor	cept	s of physi	ical chemis	try.	
CO 2		Students will develop skills in procedures and instrumental methods applied in analytical and practical tasks of physical chemistry.							
CO 3	Students will	Students will plan, conduct, review and report the experiment.							
CO 4	Students will analyze the possible errors in instrument based experiments.								
CO 5	Students will evaluate the hydrolysis constant with time.								
Pre-requisites									

	KNOWLEDGE LEVELS (KLs)							
1. Remembering,	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing							
(3/2/1 in	CO / PO / PSO/ KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)							
COs	COs KLs POs KLs							
CO 1	4	PO 1	2					
CO 2	1	PO 2	1					
CO 3	3	PO 3	5					
CO 4	3	PO 4	5					
CO 5	2	PO 5	4					
PSO 1	3	PO 6	6					
PSO 2	2	PO 7	2					
PSO 3	2	PO 8	3					

	CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	
CO1	1	1	2	2	3	1	1	2	
CO2	2	3	1	1	1	1	2	1	
CO3	2	1	1	1	2	1	2	3	
CO4	1	1	3	3	2	2	1	1	
CO5	1	1	2	2	1	3	1	1	

CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)							
COs	Programme Specific Outcome (POs)						
005	CO1	CO2	CO3	CO4	CO5		
PSO1	1	3	2	2	1		
PSO2	2	2	1	3	2		
PSO3	2	1	2	1	1		

	Content of the Syllabus								
	Electrical Experiments	Hours	75						
	Conductometry: 1. Estimation of mixture of acids (HCl, CH3COOH Vs NaOH).								
	2. i. Determination pKa – Ostwald's dilution law.								
	ii. Determination of solubility product - Kohlrausch's	s law.							
	3. Estimation of mixture of halides (KCl, KI Vs AgNO3	3).							
	4. Determination of hydrolysis constant (for aniline hydrochloride)								
	5. i. Saponification of ethyl acetate (Kinetics study).								
Unit - I	ii. Comparison of the relative strength of acetic acid and chloroacetic acid.								
	Potentiometry:								
	1. Estimation of mixture of acids (HCl, CH ₃ COOH Vs NaOH).								
	2. Determination of solubility product by								
	a) Galvanic cell method.								
	b) Concentration cell method.								
	3. Estimation of mixture of halides (KCl, KI Vs AgNO ₃).								
	4. Determination of E^0 of Zn / Zn^{2+} and estimation of Zn^{2+}								
	5. Determination of hydrolysis constant (for aniline hydrochloride)								
Total Hours 75									
Text Books			I						
P.S. Sindhu	, Practicals in Physical Chemistry, 1st Edition, Macmillan, India	u (2006).							

V. Venkateswaran, R. Veeraswamy and A. R. Kulandaivelu, Basic Principles of Practical Chemistry, New Delhi, S.Chand & Co, (1995).

References

B Viswanathan, P.S. Raghavan, Practical Physical Chemistry, Viva Books Private Limited, (2005).

E-References

http://nptel.ac.in/courses/Webcourse-contents/IISc-BANG/Material Science

http://www.cffet.net/sia-e/2_Pot_titr.pdf

MOREN ENPONERMENT	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								TO VHORMAN CENTIFICD V VHORMANY
Programme	M.Sc	Programme Code			PC	СН	Regulatio	ns	2020-2022
Department	Cl	nemistry		Semester				3	
Course Code	Course Name		Hours per Week Credit			Maximum		n Marks	
			L	Т	Р	С	CA	ES	SE Total
22P3CHE05	Elective-IV Physical methods in Chemistry					04	25	7	5 100
Course Objectives	 To make the students to understand the principles of vibrational and rotational spectroscopy. To acquire knowledge in the field of UV-Vis spectroscopy and its application to organic chemistry. 								

COs	COURSE OUTCOME
CO 1	Students will learn about instrumental techniques in Microwave Spectroscopy
	that helps them incharacterizing new materials.
CO 2	Specialized and basic spectroscopic techniques are taught such as Infrared
	spectroscopy and Raman spectroscopy
CO 3	Students will learn about the theory of UV spectroscopy, Fluorescence
0.5	Spectroscopy and its applications
CO 4	Students will analyze theory and applications of Nuclear Magnetic
	Resonancespectroscopy and EPR spectroscopy. These topics help thestudents in
	understanding the basic principle and applications of different characterizing
	techniques
CO 5	The students gain more knowledge about the concepts of Mass, and Mossbauer
	techniques andhow to apply the learned concepts of these techniques forspectral
	interpretation. This helps to find out the structure of synthesized unknown
	organic compound.
Pre-requisites	

KNOWLEDGE LEVELS (KLs)						
1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing						
(3/2/1 in	CO / PO / PSO/ KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)					
COs	COs KLs POs KLs					
CO 1	4	PO 1	2			

CO 2	1	PO 2	1
CO 3	3	PO 3	5
CO 4	3	PO 4	5
CO 5	2	PO 5	4
PSO 1	3	PO 6	6
PSO 2	2	PO 7	2
PSO 3 2		PO 8	3

		(3/2/1 indi	cates the st		O Mapping relation, 3-	g strong, 2-me	dium, 1-wea	ak)
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1	1	2	2	3	1	1	2
CO2	2	3	1	1	1	1	2	1
CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)					
COs Programme Specific Outcome (POs)					
0.03	C01	CO2	CO3	CO4	CO5
PSO1	1	3	2	2	1
PSO2	2	2	1	3	2
PSO3	2	1	2	1	1

	Content of the Syllabus				
	Microwave spectra	Hours	15		
	Introduction: Electromagnetic radiation, Interaction of light with matter, mechanism of				
	absorption & emission of radiation. Rotational, vibrational, and electronic transitions innit - Imolecules; regions and representation of spectra. Micro wave Spectroscopy: Diatomic				
Unit - I					
	molecules as rigid rotors: rotational energy levels, intensity of spectral lines, selection				
	rules, effect of isotopic substitution. Diatomic molecules as non-rigid rotors. Rotational				
	spectra of polyatomic molecules – Linear and Symmetric top molecule.				
Unit - II	Vibrational Spectra	Hours	15		

	Vibrational Spectroscopy: Vibrating diatomic molecule: ener	gy of diatomic	nolecules as			
	simple harmonic and Anharmonic oscillator - energy levels,	vibrational trans	itions,			
	selection rules; Diatomic vibrating rotator: Born-Oppenheimer approximation,					
	vibrationrotational spectra, selection rules; P, Q, R branches. Vibrations of polyatomic					
	molecules: fundamental vibrations and its symmetry, normal	modes of vibra	tion,			
	overtones and combination of bands.					
	Raman Spectroscopy: Rayleigh scattering, Raman Scattering. Polarizability, Polarization					
	of Raman lines, Rule of mutual, exclusion, Instrumentation and applications					
	UV and fluorescence Spectroscopy	Hours	15			
	UV-spectroscopy: Theory, Instrumentation, selection rules, E	Beer-Lamberts I	Law,			
	Electronic transitions, Characteristic absorption (λ_{max} and ϵ_{max}	() Conjugated d	ouble bond –			
Unit - III	dienes, carbonyl compounds and aryl groups. Factors influen	cing absorption				
	Fluorescence and phosphorescence, fluorescence quenching,	concentration of	luenching,			
	quenching by excimer and exciplex emission, fluorescence re-	sonance energy	transfer			
	between photoexcited donor and acceptor systems (FRET).					
	NMR and ESR Spectroscopy	Hours	15			
	NMR Spectra: Theory, Instrumentation. Chemical shift - Factors affecting chemical shift,					
	Shielding and deshielding mechanisms. Spin-spin coupling, Coupling constant – Geminal					
	and Vicinal coupling constant, heteronuclear couplings, Nuclear Overhauser effect.					
Unit - IV	Introduction to ¹³ C NMR, ¹⁹ F NMR, ³¹ P NMR and applications of ¹ H NMR.					
	ESR Spectroscopy – Theory, derivative curves, g values, Hyperfine splitting, Zerofield					
	splitting, Kramersdegeneracy-Isotropic and anisotropic systems and Applications in metal					
	complexes.					
	Mass Spectrometry and Mossbauer Spectroscopy	Hours	15			
		dev (D.B.F.) M	olecularion			
	Mass Spectrometry :Instrumentation, Molecular Formulae Index (D.B.E), Molecular ion peak, base peak, metastable ions, Nitrogen rule, effect of isotopes, Rules for					
	fragmentation, Mclafferty rearrangement, retro Diels- Alder fragmentation,					
	Fragmentation of hydrocarbons, alcohols, Phenols, Halides, aldehydes, Ketones, amines,					
Unit - V	nitriles, carboxylic acids, esters, Problems based on analysis of mass spectra of various					
	organic compounds Prediction of molecular formulae based on relative abundance.					
		•				
	organic compounds Prediction of molecular formulae based of	on relative abun	dance.			
	organic compounds Prediction of molecular formulae based of Mossbauer Spectroscopy: Line width - Isomer shift - Quadru	on relative abun	dance.			
	organic compounds Prediction of molecular formulae based of	on relative abun	dance.			
	organic compounds Prediction of molecular formulae based of Mossbauer Spectroscopy: Line width - Isomer shift - Quadru	on relative abun	dance.			
ext Books	organic compounds Prediction of molecular formulae based of Mossbauer Spectroscopy: Line width - Isomer shift - Quadru interactions, Structural elucidation of iron tin complexes.	on relative abun	dance. s - Magnetic			
ext Books	organic compounds Prediction of molecular formulae based of Mossbauer Spectroscopy: Line width - Isomer shift - Quadru interactions, Structural elucidation of iron tin complexes.	on relative abun	dance. s - Magnetic 75			

2	Gurudeep Raj, Advanced Physical Chemistry, Goel Publishing House, (2014)		
3	R. Chang., Basic principles of Spectroscopy, McGraw-Hill Inc., US (1971).		
4	Jag Mohan., Organic Spectroscopy - Principles and Applications, CRC press (2004)		
5	D.N. Sathyanarayana., Introduction to Magnetic resonance Spectroscopy, IK International Publishing		
	House Pvt. Ltd., (2013)		
6	Introduction to MoelcularSpectrsocopy : G.M. Barrow, McGraw Hill (1962)		
References			
1	C. N. Banwell and E. M. McCash., Fundamentals of Molecular Spectroscopy, 4th Edn, Tata McGraw Hill, (2010).		
2	B.R. Puri, L. R. Sharma, M. S. Pathania., Principles of Physical Chemistry, Vishal Publishing Co. (2016)		
3	P. S. Kalsi., Spectroscopy of Organic Compounds, New Age International (2007)		
4	NMR, NQR, EPR & Mossbauer Spectroscopy in Inorganic Chemistry : R.V. Parish, Ellis Harwood.		
E-References			
1	nptel.ac.in/courses/103103033/module9/lecture1.pdf		
2	http://folk.ntnu.no/fredrol/Nanomaterials%20and%20Nanochemistry.pdf		
3	https://www.ceitec.eu/nanoparticles-for-biomedical-applications/f33079		
4	https://chem.libretexts.org/		

HOUEN ENDOWERUELT	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								
Programme	M.Sc	M.Sc Programme Code PCH Regulations					ons	2022-2024	
Department	Cl	hemistry	stry Semester					4	
Course Code	Course Name		Hours per Week Credit			Credit	Maximum Marks		
			L	Т	Р	С	CA	ESH	E Total
22P3CHE06	ELECTIVE PAPER: Industrial Chemistry					04	25	75	100
Course Objectives	To impart knowledge on fermentation, pigments, oils and fats. To understand the industrial applications of chemistry. To give an idea for the student about drugs and explosives.								

COs	COURSE OUTCOME
CO 1	Students enable to understand various fermentation processes.
CO 2	Acquire knowledge about different drugs and pharmaceutical aids.
CO 3	Students know about the types of pigments and its use.
CO 4	Students will analyze the applications of enamels, adhesives and explosives.
CO 5	Students enable to understand importance of oils and fats for commercial applications.
Pre-requisites	

	KNOWLEDGE LEVELS (KLs)							
1. Remembering, 2	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing							
	CO / PO / PSO/ KL Mapping							
(3/2/1 ir	ndicates the strength of	correlation, 3-strong, 2-m	edium, 1-weak)					
COs	COs KLs POs KLs							
CO 1	4	PO 1	2					
CO 2	1	PO 2	1					
CO 3	3	PO 3	5					
CO 4	3	PO 4	5					
CO 5	2	PO 5	4					
PSO 1	3	PO 6	6					
PSO 2	2	PO 7	2					
PSO 3	2	PO 8	3					

ſ	CO / PO Mapping						
	(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)						
Ī	COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8						

CO1	1	1	2	2	3	1	1	2
CO2	2	3	1	1	1	1	2	1
CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)						
COs	Programme Specific Outcome (POs)						
COS	CO1	CO2	CO3	CO4	CO5		
PSO1	1	3	2	2	1		
PSO2	2	2	1	3	2		
PSO3	2	1	2	1	1		

	Content of the Syllabus							
	Fermentation	Hours	15					
	Introduction - Historical -Conditions favourable for fermenta	tion. Character	istics for					
Unit - I	enzymes - short accounts of some fermentation processes - N	Manufacture of	beer – sprits-					
	wines and power alcohol. Ethyl alcohol from molasses- Prep	aration of wash	and					
	distillation. Alcohol from waste sulphite liquor- Distillery eff	fluents for						
	Agricultural production.							
Unit - II	Drugs, diagnostic reagents and pharmaceutics aids	Hours	15					
	Drugs: Definition sources of drugs – some important dru	lgs – aspirin –	phenacetin –					
	paracetamol – penicillin – chlormycetin – structure – prop	erties – uses.						
	Organic diagnostic reagents – definition – uses – sodi	um diatrizoate,	phenol red					
	Evans blue, indigo carmine, methylene blue, xylose, Hista	mine and sodiu	m benzoate					
	- properties – uses.							
	Organic pharmaceutics aids – Definition – preser	vatives – anti	ioxidants –					
	flavouring agents - colouring agents - sweetening agents	s - Emulsifying	g agents and					
	stabilising agents - examples for each class - uses (stru-	acture and prep	paration not					
	necessary)							
	Pigments	Hours	15					
	Definition – composition, characteristics and uses of wh	ite pigments -	white lead,					
	Zinc oxide Lithopone and TiO ₂ – Blue pigments – Ultra r	narine blue and	l iron blue –					
Unit - III	characteristics - uses. Red pigments - red lead -characteristics and uses. Green							
	pigments – chrome green and Guigwet's green– characteristics and their uses- Black							
	pigments-Natural black oxide, precipitated black iron ox	ide, carbon bla	ck- Yellow					
	pigments- orchre, chrome black.							

	esin adhesives.	animal glue –						
nels: Introduction - Raw Materials – Manufacture and A		bone glue - protein adhesives - starch adhesives – Synthetic resin adhesives.						
Enamels: Introduction - Raw Materials – Manufacture and Applications								
plosives: Introduction- Classification - Characteristics	of Explosives.	Preparation						
d uses of explosives- Nitro cellulose, TNT, Picric acid, C	Gun Powder and	d Dynamite.						
ls and Fats	Hours	15						
s-Properties, Manufacture of soap. Types- Transparent S	Soap, Toilet soa	p, Powder						
and Liquid soap –Ingredients.								
rgents-Definition, Properties- Cleansing action - Soaple	ess detergents -	Uses of						
gents as surfactants. Biodegradability of soaps and deter	rgents.							
r- Manufacture from sugar cane - Recovery of sugar fro	om molasses - T	esting and						
nation of sugar.								
er- Manufacture of pulp – Mechanical, Chemical process	s - Sulphate pul	p - Rag pulp.						
Manufacture of paper.								
Cement – Types - Raw materials. Manufacture- Wet process- constituent of Cement								
operties of cement.								
Total Hours		75						
	d uses of explosives- Nitro cellulose, TNT, Picric acid, C Is and Fats s-Properties, Manufacture of soap. Types- Transparent S and Liquid soap –Ingredients. rgents-Definition, Properties- Cleansing action - Soaple gents as surfactants. Biodegradability of soaps and deter ur- Manufacture from sugar cane - Recovery of sugar from nation of sugar. er- Manufacture of pulp – Mechanical, Chemical process ufacture of paper. ement – Types - Raw materials. Manufacture- Wet pro- operties of cement.	d uses of explosives- Nitro cellulose, TNT, Picric acid, Gun Powder and Is and Fats Hours s-Properties, Manufacture of soap. Types- Transparent Soap, Toilet soa and Liquid soap —Ingredients. rgents-Definition, Properties- Cleansing action - Soapless detergents - gents as surfactants. Biodegradability of soaps and detergents. ur- Manufacture from sugar cane - Recovery of sugar from molasses - T nation of sugar. er- Manufacture of pulp — Mechanical, Chemical process - Sulphate pul ufacture of paper. ement — Types - Raw materials. Manufacture- Wet process- constituen operties of cement.						

Text	Books					
1	B.N. Charabarthy - "Industrial Chemistry", 1st Ed., Oxford and IBh Publishing, New					
	Delhi.					
2	B.K. Sharma – "Industrial Chemistry", 1st Ed., (1983), Goel Publication, Meerut.					
3	Arun Bahl and B.S. Bahl – "Text Book of Organic Chemistry", 11th and 18th Ed., S. Chand,					
	New Delhi, 2006.					
4	Ghosh, Jayashree – "Text Book of Pharmaceutical Chemistry", 3rd Ed., S.Chand& Co.					
	Ltd., New Delhi, 1999.					
Refe	rences					
1	V.P. Gowariker and N.V. Viswanathan – "Polymer Science", 1st Ed., Wiley Easter Pvt.					
	Ltd., New Delhi.					
2	Lakshmi. S – "Pharmaceutical Chemistry", 3rd Ed., (1995), Sultan Chand & Sons, New					
	Delhi.					
3	Rajasekaran, VN "Pharmaceutical Chemistry", 1st Ed., (2003), Sun Publications -					
	Chennai.					
4	Krishnamoorthy, P. Vallinayagan& K. Jaya Subramanian – "Applied Chemistry", 2 nd Ed.,					
4	(1999, 2001), Tata MaGraw-HillPublishing Co. Ltd., New Delhi.					

E-Re	E-References						
1	http://www.naturebioscience.com/molasses-fermentation.php						
2	https://digital-photography-school.com/mastering-color-series-color-blue-in-photography						
3	https://www.ilo.org/legacy/english/protection/safework/ghs/ghsfinal/ghsc1528.pdf						

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.

Programme	M.Sc Programme Code			РСН			Regulatio	ns 2	2022-2024
Department	Chemistry					Semeste	er		4
Course Code	Course Name			Hours per Week		Credit	Maximum Marks		Marks
			L	Т	Р	С	CA	ESE	Total
22P4CH09	Core – IX Electrochemistry and Photochemistry					05	25	75	100
Course Objectives	 To impart the basic concepts electrochemistry. To understand the application of electrochemistry and electrochemical cells. To acquire knowledge about electrochemical reactions. To enrich the students' knowledge with the basic principles 						s.		

COs	COURSE OUTCOME
CO 1	Students will understand the basic principles of electrochemistry and different types of electrochemical cells.
CO 2	Students will learn about the basic concepts of photochemistry and their importance in various fields.
CO 3	Students will apply their knowledge of photochemistry in the process taking place in biosystems.
CO 4	Students will analyze the various electrokinetic processes.
CO 5	Students will evaluate the theories of electrical double layer theories.
Pre-requisites	

	KNOWLEDGE LEVELS (KLs)									
1. Remembering, 2	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing									
(3/2/1 in	CO / PO / PSO/ KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
COs KLs POs KLs										
CO 1	4	PO 1	2							
CO 2	1	PO 2	1							
CO 3	3	PO 3	5							
CO 4	3	PO 4	5							
CO 5	2	PO 5	4							
PSO 1	3	PO 6	6							
PSO 2	2	PO 7	2							
PSO 3	2	PO 8	3							

	CO / PO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs	COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8										
CO1	1	1	2	2	3	1	1	2			
CO2	2	3	1	1	1	1	2	1			
CO3	2	1	1	1	2	1	2	3			
CO4	1	1	3	3	2	2	1	1			
CO5	1	1	2	2	1	3	1	1			

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
COs		Programme Specific Outcome (POs)								
	CO1	CO2	CO3	CO4	CO5					
PSO1	1	3	2	2	1					
PSO2	2	2	1	3	2					
PSO3	2	1	2	1	1					

	Content of the Syllabus								
	Electro chemistry - I	Hours	15						
Unit - IIntroduction to electrochemical cells-Types-Chemical cells with a transferences-Concentration cells- types- electrode concentration cells concentration cells - with and without transferences - liquid junction - derivation- Electrical double layer, theories of double layer -El phenomena: Electroosmosis – electrophoresis - Diffusion, Stre Sedimentation potentials Dispersion dielectric loss and reractive index -									
	jones potential. electro-capillary phenomena, electro-capillary curve. Electro chemistry - II Hours 15								
Unit - II	Debye - Huckel theory of inter-ionic attraction, ionic atm relaxation and - phoretic effects, Derivation of Debye-Hu its validity for dilute solutions at appreciably conce Falkenhagen and Wein effects. Mean ionic activit determination. Debye – Huckel Bronsted equations - D limiting law, Quantitative and qualitative verification, io theory -Clausius –mosotti Equation –electrostatic of dielec	osphere, time ackel-Onsagar entrated soluti by coefficient erivation of D n association a	of relaxation, equation and ons. Debye- s and their Debye-Huckel						
	Applications of Electrochemistry	Hours	15						

Unit - III	Polarography- Introduction-Origin of diffusion limiting current—Polarisable Dropping mercury electrode-Principles of polarography-Instrumentation techniquesthe Ilkovic equation-Polarographic waves-Half wave potential-polarographic maximaAC polarography-Rapid scan polarography—-pulse polarography – square wave polarography- Applications of polarography-Qualitative and quantitative analysis- organic polarographic analysis. Anodic stripping voltammetry-Principles – applications.Cyclic voltammetry – principles and applications. Electrochemical sensors and detectors-applications.						
	Organic Photochemistry	Hours	15				
Unit - IV	Fundamental concepts - Photooxidation reaction (Formation of Peroxy compounds) – Photoreduction of ketones and enones, Norrish type I and II reactions- Photodimerisation of carbonyl compounds-Intramolecular hydrogen abstraction - Photochemistry of Alkenes, Dienes and Aromatic compounds - Photoisomerisation – Cis and Trans isomerization - Photoaddition reaction-Paterno-Buchirreaction-Barton reaction Photo– Fries rearrangement and photorearrangement of 2,5- Cyclohexadienones. Cycloaddition reaction of Enones with alkenes. The Hoffmann						
	Applied Photochemistry	Hours	15				
Unit - V	Applied PhotochemistryHours15Photochemistry reaction in the atmosphere - oxygen and ozone - nitrogen oxide - chlorofluoro carbons - organic compounds - chemistry of vision – photography - Light absorbing compounds -photosensitisers-ultraviolet screening agents - optical bleach – photochronism - photoimaging - photochemistry of polymers - Photochemistry of Aromatic compounds- photochemistry of carbonyl compounds Photo polymerization: imaging, curing - photodegradation and photostabilization Photoelimination photochemistry of excited redox reactions.						
	Total Hours		75				

Tex	at Books
1	K. K. Rohatgi - Mukharjii, Wiley Eastern., Fundamentals of Photochemistry, New age
	international., P Ltd., New Delhi 2011
2	S. Glasstone, D. Van Nostrand., An introduction to Electrochemistry., Affiliated East west
	press Pvt., Ltd., New Delhi, 2004
3	Gurdeep Raj, Advanced Physical Chemistry, Go Publishing House.1999

4	Jagdambasingh, Jaya singh, Photochemisty& Pericyclic Reaction, New age international publishers 2012							
Ref	erences							
1	M.S Yadav Electrochemistry- Anmol Publication Pvt Ltd. New Delhi, 2011							
2	J.G.Calverts&J.N.Pitts - An introduction to Photochemistry, New age international p Ltd., New Delhi. Wells.							
E-R	leferences							
1	http//www.engr.uconn.edu/~jmfent/CHEG320_electrochemistry%20lectures.pdff33079							
2	https://web.stanford.edu/group/burnslab/meetings/13_01_24_QOphotochemistry.pdf							

HONER ENPONECULAR	VIVEKA	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								
Programme	M.Sc	Programme Code			P	СН	Regulati	ons	202	22-2024
Department	C	hemistry				Semester				4
Course Code	Course Code Course Name			erio We		Credit	Max	imu	m M	arks
			L	Т	Р	C	CA	ES	SE	Total
22P4CHE07	ELECTIVE IV Environmental	LECTIVE IV: nvironmental Chemistry				03	25	75	5	100
Course Objectives	treatment, in	impart knowledge in the field of environment, pollution, water quality, water ment, industrial, agricultural pollutants, water management and acquire wledge on the structure of atmosphere.								
COs		CO	UR	SE () JU	ГСОМЕ				
CO 1	Students wi	ll acquire sound know	ledg	e of	en	vironmental	chemistry			
CO 2	Students lea	urn the importance of	vate	r ma	inag	gement				
CO 3	Students wi	ll acquire knowledge	e about pollution from industries							
CO 4	Students wi	Students will acquire knowledge about pollution from agricultural wastes								
CO 5	Students wi	Students will evaluate the waste management								
Pre-requisites										

	KNOWLEDGE LEVELS (KLs)										
1. Remembering, 2	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing										
	CO / PO / PSO/ KL Mapping										
(3/2/1 in	ndicates the strength of c	correlation, 3-strong, 2-m	edium, 1-weak)								
COs	COs KLs POs KLs										
CO 1	4	PO 1	2								
CO 2	1	PO 2	1								
CO 3	3	PO 3	5								
CO 4	3	PO 4	5								
CO 5	2	PO 5	4								
PSO 1	3	PO 6	6								
PSO 2	2	PO 7	2								
PSO 3	2	PO 8	3								

	CO / PO Mapping										
	(3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8			
CO1	1	1	2	2	3	1	1	2			

CO2	2	3	1	1	1	1	2	1
CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

	CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)									
COs		Programme Specific Outcome (POs)								
	CO1	CO2	CO3	CO4	CO5					
PSO1	1	3	2	2	1					
PSO2	2	2	1	3	2					
PSO3	2	1	2	1	1					

	Content of the Syllabus						
	Fundamentals of Environmental Chemistry	Hours	15				
	Concept of environmental chemistry, Composition of atmosp	phere, vertical	temperature				
Unit - I	and vertical structure of the atmosphere. Environmental pollu	tion: Types and	d sources of				
Omt - I	Pollutants - air, water and soil pollution. Prevention and	d control of p	ollutions				
	Biogeochemical cycles C, N, P, S and O. Biological control	of chemical fa	actors in the				
	environment.						
	Water Chemistry	Hours	15				
	Characteristics of water, Quality of natural water, quality requirements of portable water,						
	organic, humic and colloidal material in water, chemical composition of water bodies,						
Unit - II	Commercial water purification method- reverse osmosis method-disinfection of water-						
	purification method of water for industrial purpose- lime-soda process, ion exchange						
	process, Zeolite process. Water pollution and its environmental impact, eutrophication,						
	Water quality parameters: pH, conductivity, TDS, DO, BOD	and COD. Ro	le of water in				
	the environment- Hydrological cycle.						
	Atmospheric Pollutants	Hours	15				
	Atmospheric chemistry-Particles, ions and radicals in the atmosphere. Natural and						
	anthropogenic sources of pollution. Primary and Secondary pollutants. Transport and						
Unit - III	diffusion of pollutants. Oxygen and ozone chemistry. Chemistry of air pollutants,						
	Photochemical smog. Methods of monitoring and control of	•					
	SPM. Effects of pollutants on human beings, plants, anima	ls and materia	ls. Air quality				
	Standards						

Unit - 1	IV Soil and sediment geochemistry	Hours	15
	Soil and sediment geochemistry-Inorganic and organic composition	onents of soil,	Weathering of
	rocks, rock forming minerals, Soil properties, acid-base and i	on-exchange r	eaction in soi
	Macro and micronutrients in soil, Nitrogen pathways and NPk	K in soils, Inter	ior of the ear
	minerals and rocks- earth processes- plate tectonics- sea floor	or spreading, n	nountain
	building, rock deformation		
	Waste Management and Recycling	Hours	15
	Sources and classification of waste. Waste management -	Land filling -	Incineration
	Disposal of medicinal waste - New technique to treat ind	lustrial and fa	rm effluents
T T •4	Reduce, reuse and recycle - Wealth from waste recycling - Re	ecycling techni	que - Utilizi
Unit -	agricultural waste - Energy Recovery from Waste - Municip	pal waste into	road making
	Electricity from tannery waste - Vermicomposting - biogas -	Plastic recyclin	ng technique
	Waste water and its treatment - primary treatment pre-treatment	nent – sedimen	tation –
	Flotation, recycling of sewage - Removal of hazardous wastes	from contamin	ated metals.
	Total Hours		75
'ext Book	8		
1	Sharma and Kaur, Environmental Chemistry, Krishna Publishers,	New Delhi, 20	00.
2	Dara, S.S., Environmental Pollution and Control, S.Chand& Co., I	New Delhi, Firs	st Edition,
	1993.		
3	S.E Manahan, Environmental Chemistry, Lewis Publishers, Londo	on, 2001.	
eferences	6		
1	De, A.K., Environmental Chemistry, New Age International Pu	iblishers Priva	te Ltd., New
	Delhi, Fifth Edition, 2008.		
2	Sodhi, G.S., Fundamantal Concepts of Environmental Chemistry,	Narosa Publish	ning House
	Pvt. Ltd., New Delhi, Third Edition, 2009.		
3	Jadhav H.V Elements of Environmental Chemistry, Himalaya. (19	92)	
-Referen	ces		
1	www.purdueglobal.edu/degree-programs/legal-studies/bachelor-e	nvironmental-r	oolicy-
	management	1	-
2	www.onlinecolleges.net/degrees/environmental-science		

NOMEN EMPOWERNEN	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								CENTIFICO
Programme	M.Sc	M.Sc Programme Code PCH Regulations						ons	2020-2022
Department	Chemistry S			Semester			4		
Course Code	Course Name		Periods per Week			Credit	Maximu		n Marks
			L	Т	Р	С	CA	ES	E Total
22P4CHE08	ELECTIVE IV: Green Chemistry					03	25	7:	5 100
Course Objectives	 To design and produce cost-competitive chemical products To processes that attain the highest level of the pollution-prevention hierarchy by reducing pollution at its source 								

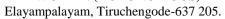
COs	COURSE OUTCOME
CO 1	Students will acquire sound knowledge of Green chemistry
CO 2	Students learn new beneficialsustainable substances and processes
CO 3	Students will acquire knowledge about pollution from industries
CO 4	Students will acquire knowledge about pollution from agricultural wastes
CO 5	Students will evaluate the waste management
Pre-requisites	

	KNOWLEDGE LEVELS (KLs)									
1. Remembering,	1. Remembering, 2. Understanding, 3. Applying, 4. Analyzing, 5. Evaluating, 6. Synthesizing									
CO / PO / PSO/ KL Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)										
COs	COs KLs POs KLs									
CO 1	4	PO 1	2							
CO 2	1	PO 2	1							
CO 3	3	PO 3	5							
CO 4	3	PO 4	5							
CO 5	2	PO 5	4							
PSO 1	3	PO 6	6							
PSO 2	2	PO 7	2							
PSO 3	2	PO 8	3							

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	1	1	2	2	3	1	1	2
CO2	2	3	1	1	1	1	2	1
CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

CO / PSO Mapping (3/2/1 indicates the strength of correlation, 3-strong, 2-medium, 1-weak)								
COs Programme Specific Outcome (POs)								
COS	C01	CO2	CO3	CO4	CO5			
PSO1	1	3	2	2	1			
PSO2	2	2	1	3	2			
PSO3	2	1	2	1	1			

	Content of theSyllabus									
	Introductions	Hours	15							
	Green chemistry-relevance and goals, Anastas' twelve princip	les of green che	emistry -							
Unit - I	Tools of green chemistry: alternative starting materials, reagen	ts, catalysts, so	lvents and							
	processes with suitable examples.									
	Solvent free reactions, Ionic liquids	Hours	15							
	Exploration of solvent free reactions – Microwave assisted org	ganic synthesis	_							
	Functional group transformations – Protection and deprotection reactions, Condensation									
Unit - II	reactions, reduction, oxidation and multi-component reactions.									
	Ionic liquids and PTC Introduction – synthesis of ionic liquids – physical properties –									
	applications in alkylation – hydroformylations – expoxidations – synthesis of ethers –									
	Friedelcraft reactions – Diels-Alder reactions – Knoevengal co	ondensations – '	Wittig							
	reactions – Phase transfer catalyst - Synthesis – applications									
	Supported catalysts&Eco-friendly green Techniques	Hours	15							
	Biocatalysts – Modified biocatalysts – Transition metal catalysts – Supported metal									
	catalysts. Eco-friendly synthesis and reactions of unsaturated nitroalkanes. Heterogenized									
Unit - III	reactions - Mineral solid catalysed reactions - Solid supported catalysts -Super critical									
	fluids.A photochemical alternative to Friedel-crafts reactions - Dimethyl carbonate as a									
	methylating agent – the design and applications of green oxida	nts – super crit	ical carbon							
	dioxide for synthetic chemistry.									


	Oxidation at ambient conditions for wastewater treatment – Photocatalytic reactions – Electrocatalytic reactions – Fentons chemistry – Hybrid processes.Chemical methods for dye removal – Oxidative processes – physical treatments –Biological treatments.					
	Exploration of Green Chemistry	Hours	15			
	Trace element speciation by hyphenated techniques – tools for analytical speciation.					
Unit - V	Green chemicals – Prospects and future in designing new drug	s.				
	Designing of next generation agrochemicals from nature.					
	Total Hours		75			

Text Books	
1	Rashmi Sanghi and M.M.Srivastava (Eds.), Green Chemistry – Environment
	friendly alternatives, Narosa Publishing house, New Delhi, 2003.
2	P.T.Anastas and J.C.Warner, Green Chemistry: Theory and Practice, Oxford
	Science Publications, Oxford, 1998
3	P.Tundo and P.T.Anastas(Eds.) Green Chemistry: Challenging Perspectives,
	Oxford University Press, Oxford, 2000
References	
1	P.T.Anastas and T.C.Williamson(Eds.) Green Chemistry: Frontiers in
	Chemical Synthesis and processes, Oxford University Press, Oxford, 1985.
2	A.S.Matlach, Introduction to Green Chemistry, Marcel Decker Inc New York, 2001
3	Green Chemistry – Environmentally benign reactions – V. K. Ahluwalia. Ane Books India
	(Publisher). (2006).
4	Green Chemistry - Designing Chemistry for the Environment - edited by Paul T. Anastas&

4	Green Chemistry – Designing Chemistry for the Environment – edited by Paul T. Anastas& Tracy C. Williamson. Second Edition, (1998).
5	Green Chemistry – Frontiers in benign chemical synthesis and processes- edited by Paul T. Anastas& Tracy C. Williamson. Oxford University Press, (1998).
6	Green Chemistry – Environment friendly alternatives- edited by Rashmi Sanghi& M. M. Srivastava, Narora Publishing House, (2003).

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS)

Programme	M.Sc	Programme Code		РСН		Regulations		2022-2024	
Department	Chemistry			Semester					4
Course Code	Course Name		Course Name		Hours per Week Credit		Maximum		m Marks
			L	Т	Р	С	CA	ESI	E Total
22P4CHP06	Physical Cher Practical	Physical Chemistry Non-Electrical Practical			6	04	40	60	100
Course Objectives	 To apply the principles of phase rule, adsorption in the analysis of physical and chemical properties of the given compounds To develop laboratory skills To the ability to work with instruments independently. 								

COs	COURSE OUTCOME
CO 1	Students will understand the breadth and concepts of physical chemistry.
CO 2	Construct and explain phase diagram for multi-component system
CO 3	Investigate the mechanism of kinetics of reaction.
CO 4	Students will analyze the possible errors in phase studies.
CO 5	Students will evaluate the adsorption mechanism with time.
Pre-requisites	

1. Remembering, 2.	Understanding, 3. App	GE LEVELS (KLs) lying, 4. Analyzing, 5. Ev PSO/ KL Mapping	aluating, 6. Synthesizing
(3/2/1 ind	licates the strength of co	rrelation, 3-strong, 2-me	dium, 1-weak)
COs	KLs	POs	KLs
CO 1	4	PO 1	2
CO 2	1	PO 2	1
CO 3	3	PO 3	5
CO 4	3	PO 4	5
CO 5	2	PO 5	4
PSO 1	3	PO 6	6
PSO 2	2	PO 7	2
PSO 3	2	PO 8	3
L	CO/P	O Mapping	
(3/2/1 in	0	correlation, 3-strong, 2-m yeak)	edium, 1-

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P
								0 8
CO1	1	1	2	2	3	1	1	2
CO2	2	3	1	1	1	1	2	1
CO3	2	1	1	1	2	1	2	3
CO4	1	1	3	3	2	2	1	1
CO5	1	1	2	2	1	3	1	1

	(3/2/1 indicates the	CO / PSO strength of correl		-medium, 1-weal	k)					
COs	Programme Specific Outcome (POs)									
	CO1	CO2	CO3	CO4	CO5					
PSO1	1	3	2	2	1					
PSO2	2	2	1	3	2					
PSO3	2	1	2	1	1					
		Content of th	e Syllabus							
	Non- Electrical Exp	periments		Hours	75					
	1. Phase diagram of	a binary system -S	Simple Eutectic for	mation						
	2. Phase diagram of	f a two-component	t system forming c	compound (with c	congruent					
	melting point).									
	3. Phase diagram of	a three-compone	nt liquid system (v	with one partially	miscible pair					
	(Toluene-Water-	Acetic acid).								
T	4. Heat of solution of	of benzoic acid in v	water.							
Unit - I 5. Verification of Freundlich adsorption isotherm (Adsorption of oxalic acid										
	Charcoal).									
	6. Comparison o	f strengths of three	e acids from kinetio	c study (Iodinatio	n of acetone).					
	7. Determination of	of E_a and A (for the	ne hydrolysis of e	thyl acetate at d	ifferent					
	temperatures).									

1	Text Books and	d References	

9. Primary salt effect (on the kinetics of reaction between S2O82- and I-).

75

Determination of molecular weight by Rast's micro method.

1 P.S. Sindhu, Practicals in Physical Chemistry, 1 st Edition, Macmillan, India (2006).	
--	--

Total Hours

8. Estimation of KI by partition method.

10.

2	V. Venkateswaran, R. Veeraswamy and A. R. Kulandaivelu, Basic Principles of Practical Chemistry, New Delhi, S.Chand & Co, (1995).
3	B Viswanathan, P.S. Raghavan, Practical Physical Chemistry, Viva Books Private Limited,
	(2005).
E-Re	eferences
1	https://books.google.co.in/books/about/Practicals_in_Physical_Chemistry.
2	http://www.cffet.net/sia-e/2_Pot_titr.pdf

NOVEN ENPONERVENT	(LEGEOFARTSANDSCIENCESFORWOMEN (AUTONOMOUS) balayam,Tiruchengode-637205.					
Programme	M.Sc	M.Sc Programme Code			РСН				2022-2024
Department	Chemistry					3			
CourseCode	Co	ourseName		Periods per Week Credit			Max	timumN	Iarks
					Р	С	CA	ESE	Total
20P3CHED01		ELECTIVEPAPER: Applied Polymer Chemistry				04	25	75	100
Course Objectives	Applied Polymer ChemistryToimpart theknowledge inthpreparation of syndiotactic, atimpart understanding in the fievarious synthetic polymers.		atactic	and a	isotacti	c polymers u	ising Zeile	er-Natta	catalyst.To

COs	COURSEOUTCOME
CO1	Studentsenabletounderstandvariousmethodsofpolymer preparation.
CO2	Acquireknowledgeabouttypesofpolymersandprocessingtechniques.
CO3	StudentsknowMolecularweightdeterminationofpolymers.
CO4	Studentswillanalyzethevariousprocessingofpolymers
CO5	Studentsenabletounderstandimportanceofpolymersusedforcommercialapplications.
Pre-requisites	

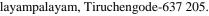
	KNOWLEI	OGELEVELS	
1.Rememberir		ng,4.Analyzing,5.Evaluating,6	Synthesizing
(3/2/		LMapping elation,3-strong,2-medium,1-v	veak)
Cos	KLs	POs	KLs
CO1	2	PO1	2
CO1		PO2	1
603	1	PO3	5
CO2		PO4	5
CO3	5	PO5	4
		PO6	6
604	2	PO7	2
CO4	3	PO8	4
C05	2	PO9	1
CO5	2	PO10	3
DSO ₂	KLs PO11 3	3	
PSOs	KLS	PO12	2

DOC	D1			3				PC	D13			1		
PSC)2		4				PC	014		6				
PSC)3			1				PC	015			3		
					CC)/POMa	apping							
(3/2/1i	ndicate	sthest	rength	ofcorrela	tion,3-s	strong,2	2-medi	um,1-v	veak)					
CO				Prog	camme(Outcom	e(POs))						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO12	PO13	PO14	PO15
CO1	3	2	1	1	1	1	1	1	2	2	3	2	1	2
CO2	2	3	1	1	1	1	2	1	3	1	2	3	1	1
CO3	1	1	3	3	2	2	1	2	1	1	1	1	2	1
CO4	2	1	1	1	2	1	2	2	1	3	2	1	1	3
CO5	3	2	1	1	1	1	1	1	2	2	3	2	1	2
	(3/2	/1indic	catesthe	estrength	ofcorre		SO Ma stron		dium.1	-weak)				

	Programme SpecificOutcome (POs)										
Cos	CO1	CO2	CO3	CO4	CO5						
PSO1	2	1	1	3	2						
PSO2	1	1	2	2	1						
PSO3	2	3	1	1	2						
Co	ourse Asses	ssment Meth	ods								
Direct											
		1. C	ontinuous Assessmen 2. Assignme 3. EndSemester Exa	ent							
Indirect											

1. Course End Delivery

	Content of the Syllabus		
Unit-I	BasicConcepts	Hours	15
	Monomers, Polymers-natural, Semi-synthetic, synthetic degree of polymerization, Linear, branched and network Polymers. Addition	I	
	polymerization: Condensation Polymerization; Thermoplastic and		


	thermosetting polymers - Elastomers, fibers and resins. Techniques of		
	polymerization - bulk solution, emulsion and suspension.		
	KINETICS AND MECHANISM	Hours	15
Unit-II	Kinetics and mechanism of polymerization - free radical, cati	onic, anionic	and
	coordination polymerization (Ziegler-Natta Catalyst). Copolymer	rization - kir	netics
	(Detailed Study). General characterization-kinetic chain length-degree	of polymeriza	tion,
	chain transfer - initiators - inhibitors - retarders.		
	MolecularWeight and Properties	Hours	15
Unit-III	Importance of molecular weight – Average molecular weight -Numb	er average, w	eight
01111-111	average and viscosity average molecular weights. Measurement of	molecular wei	ghts-
	Viscosity, light scattering, osmotic and ultracentrifugation methods.		
	Structure Properties and Analysis	Hours	15
U nit-IV			
	Structure - property relationship - mechanical properties, thermal prope	rties - glass tra	nsitio
	temperature - factors affecting glass transition temperature - crystallinit	y and melting	point
	related to structure Crystalline nature - X-Ray diffraction - Differential	Scanning Calo	rimet
	(DSC) - Thermo Gravimetric Analysis.		
	ADVANCES IN POLYMERS	Hours	15
	Biopolymers - biodegradable polymers - biomedical polymers -	poly electroly	tes -
Unit-V	conducting polymers - high temperature and fire retardant polymers	- polymer ble	end -
	polymer composites - polymer nanocomposites - IPN inter penetrating	g network poly	mers
	- electroluminescent polymers.	- •	
	Total Hours	75	;

TextB	Books
1	V.R.Gowariker, N.V.ViswanathanandJ.Sreedhar, PolymerScience, NewAgeInt., (1986).
Refer	ences
1	F.W.Billmeyer, TextBookofPolymerScience, 3rdEdition, J.Wiley, (2003).
2	H.R.AlcockandF.W.Lamber,ContemporaryPolymerChemistry,PrenticeHall,(1981).

3	P.J.Flory, Principles of Polymer Chemistry, Cornell University press, New York, (1953).
4	G.Odian, Principles of Polymerization, 2nd Edition, John Wiley & Sons, New York, (1981).
5	Roy W. TessGary W. Poehlein , Applied Polymer Science, American Chemical Society, Volume 285, 2021.
E-Ref	ferences
1	http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch8/vsepr.htm
2	https://chem.libretexts.org

VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.

Programme	M.Sc	Programme Code	amme Code PCH		Regulation s		20	22-2024		
Department	Ch	emistry				Semester				3
Course Code	Cou	rse Name	-	erioc We		Credit	Max	imu	m N	Aarks
			L	Т	Р	С	CA	ES	SE	Total
22P3CHED02	EDC: DAIRY CHEI	MISTRY	4			03	25	7:	5	100
Course Objectives	lipids in the qual To impart knowle	sic knowledge on all asp ity of milk products as v edge on different aspect hysico-chemical change	vell as s of m	s in h iilk p	uma orote	in health.	-			

COs	COURSE OUTCOME
CO 1	Students will be known to the composition of lipids in milk.
CO 2	Students can able to understand the chemical properties and secondary products of milk.
CO 3	Students can able to understand the isolation of proteins in milk.
CO 4	Knowledge of students will be enriched with knowing the physico-chemical properties of milk proteins.
CO 5	Students will systematically learn about the chemistry of milk products.
Pre-	
requisites	

	KNOWLE	DGE LEVELS	
1.Rememb	ering, 2.Understanding, 3.Appl	ying, 4.Analyzing, 5.Evaluation	ng, 6.Synthesizing
		KL Mapping	1 1)
(3/	2/1 indicates the strength of corr	relation, 3-strong, 2-medium,	1-weak)
Cos	KLs	POs	KLs
CO 1	4	PO 1	2
		PO 2	1
60.3	1	PO 3	5
CO 2	1	PO 4	5
CO 3	3	PO 5	4
03	3	PO 6	6
CO 4	5	PO 7	2
0.4	5	PO 8	4

C	D 5				6				PO	9			1		
	55				6				PO 1	0			3		
DCO.									PO 1	1			3		
PSOs				1	KLs				PO 1	2			2		
PS	01				3				PO 1	3			1		
PS	O 2			4				PO 14 2							
PS	03				1				PO 1	5			1		
			•			CO /	PO M	apping	Ş		•				
		(3/2	/1 indi	cates the	e streng	gth of c	orrelat	tion, 3-	strong	g, 2-me	dium, 1	l-weak)		
COs						Pro	gramn	ne Out	come ((POs)					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
CO1	1	1	2	2	3	1	1	3	1	2	2	1	1	1	2
CO2	2	3	1	1	1	1	2	1	3	1	1	2	3	1	1
CO3	2	1	1	1	2	1	2	2	1	3	3	2	1	1	3
CO4	1	1	3	3	2	2	1	2	1	1	1	1	1	2	1
CO5	1	1	2	2	1	3	1	1	1	1	1	1	1	3	1

(3/	/2/1 indicates the stre		/ PSO Mapping 3-strong, 2-medium,	, 1-weak)	
Car	Program	me Specific Outcom	e(POs)		
Cos	CO1	CO2	CO3	CO4	CO5
PSO1	1	3	2	2	1
PSO2	2	2	1	3	2
PSO3	2	1	2	1	1

	Course Assessment Methods
Direct	
1.	Continuous Assessment Test I, II & Model
	2. Assignment
	3. End Semester Examinations
Indirect	
1. Course End Delivery	

	Content of the Syllabus					
	Composition of Milk	Periods	15			
	Milk-definition-general composition of milk- constituents of milk - lipids, proteins, carbohydrates, vitamins and minerals - physical properties of milk -colour, odour, acidity,					
Unit - I						
	specific gravity, viscosity and conductivity – Factors affecting the composition of milk -					
	adulterants, preservatives with neutralizer examples and the	eir detection- e	estimation of fat,			

	acidity and total solids in milk.							
	Processing of Milk	Periods	15					
	Microbiology of milk - destruction of micro - organism	is in milk, physic	o –chemical					
Unit - I	changes taking place in milk due to processing - boiling	g,pasteurization -	types of					
	pasteurization - Bottle, Batch and HTST (HighTemperation	ature Short Time)	– Vacuum					
	pasteurization – Ultra High Temperature Pasteurization	1.						
	Major Milk products	Periods	15					
	Cream - definition - composition - chemistry of creami	ng process - grav	itational and					
	centrifugal methods of separation of cream - estimation	n of fat in cream.	Butter - definition					
Unit - I	composition - theory of churning – desi butter - salted	butter, estimation	of acidity and					
moisture content in butter. Ghee – major constituents - common adulterants added to								
	and their detection – rancidity - definition - prevention	- antioxidants and	1 synergists -					
	natural and synthetic.							
	Special Milk	Periods	15					
	Standardised milk - definition - merits - reconstituted n	nilk - definition –	flow diagram of					
Unit - I	manufacture - Homogenised milk - flavoured milk - vitaminised milk - toned milk -							
omt i		Incitation milk - Vegetable toned milk - humanized milk -condensed milk - definition,						
	composition and nutritive value.							
	Fermented and other Milk Products	Periods	15					
	Fermented milk products – fermentation of milk - defin		cultured milk -					
	definition of culture - example, conditions - cultured cr							
Unit - V		acidophilous milk – Yoheer Indigeneous products- khoa and chhena definition - Ice cream						
Omt -	-definition-percentage composition-types-ingredients-r							
		e–cream.						
	stabilizers - emulsifiers and theirrole-milk powder-defi							
	stabilizers - emulsifiers and theirrole-milk powder-defi dryingprocess-types of drying.							
	dryingprocess-types of drying.		aking milk powder					
Text Rool	dryingprocess-types of drying. Total Periods							
Text Boo	dryingprocess-types of drying. Total Periods	nition need for m	aking milk powder					
1	dryingprocess-types of drying. Total Periods	nition need for m	aking milk powder					
1 I 2 7	dryingprocess-types of drying. Total Periods ss Iathur MP, Datta Roy D & Dinakar P. 2008. Text Book of Dairy C	nition need for m Chemistry. ICAR. en book publish	aking milk powder 75 ers, 2021					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	dryingprocess-types of drying. Total Periods s Mathur MP, Datta Roy D & Dinakar P. 2008. Text Book of Dairy C ext book of dairy chemistry, P. L. Choudhary, Bio-Gree & Bagavathi Sundari, Applied Chemistry, MJP Publish & S. Rangappa and K.T. Acharya, Indian Dairy Product	nition need for m Chemistry. ICAR. en book publish ers, first edition	aking milk powder 75 ers, 2021 a, 2006.					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	dryingprocess-types of drying. Total Periods s fathur MP, Datta Roy D & Dinakar P. 2008. Text Book of Dairy C ext book of dairy chemistry, P. L. Choudhary, Bio-Gree E. Bagavathi Sundari, Applied Chemistry, MJP Publish S. S. Rangappa and K.T. Acharya, Indian Dairy Product Delhi, 1974.	nition need for m Chemistry. ICAR. en book publish ers, first edition	aking milk powder 75 ers, 2021 a, 2006.					
1 1 2 7 3 1 4 1 8 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	dryingprocess-types of drying. Total Periods s fathur MP, Datta Roy D & Dinakar P. 2008. Text Book of Dairy C ext book of dairy chemistry, P. L. Choudhary, Bio-Gree E. Bagavathi Sundari, Applied Chemistry, MJP Publish S. S. Rangappa and K.T. Acharya, Indian Dairy Product Delhi, 1974.	nition need for m Chemistry. ICAR. en book publish ers, first edition s, Asia Publishi	aking milk powder 75 ers, 2021 a, 2006. ng House New					
1 1 2 7 3 1 4 1 7 1 8 1 1 1 2 1	dryingprocess-types of drying. Total Periods s Mathur MP, Datta Roy D & Dinakar P. 2008. Text Book of Dairy C ext book of dairy chemistry, P. L. Choudhary, Bio-Gree & Bagavathi Sundari, Applied Chemistry, MJP Publish & S. Rangappa and K.T. Acharya, Indian Dairy Product Delhi, 1974. s	nition need for m Chemistry. ICAR. en book publish ers, first edition s, Asia Publishi istry, S.Wiley, N	aking milk powder 75 ers, 2021 a, 2006. ng House New					

1

HOMEN ENPONERNEN	VIVEKANANDHA COLLEGE OF ARTS AND SCIENCES FOR WOMEN (AUTONOMOUS) Elayampalayam, Tiruchengode-637 205.								
Programme	M.Sc	Programme Code	РСН			Regulations		2022-2024	
Department	Chemistry			Semester					4
Course Code	Course Name		Hours per Week			Credit	Maximum Marks		
			L	Т	Р	С	CA	ESE	E Total
22P4CHPR01	PROJECT			5		05	40	60	100
Course Objectives	 To inculcate the habit of literature survey among the students. To offer skill based knowledge to the students. To facilitate the students towards basic research and development. 								